# TALLANGATTA FARM LOTS 50 AND 1456 GREAT NORTHERN HIGHWAY, MUCHEA

# LOCAL WATER MANAGEMENT STRATEGY

**Prepared for** 

Tallangatta Beef Pty Ltd

c/- iParks Property Group Pty Ltd 38 Mandurah Rd KWINANA BEACH WA 6167

> Draft Report No. J20008b 11 March 2021

> > BAYLEY ENVIRONMENTAL SERVICES 30 Thomas Street SOUTH FREMANTLE WA 6162

# TABLE OF CONTENTS

# Page

| 1.0 | INTR | ODUCT        | ION                                                      | 1   |  |  |  |  |  |  |
|-----|------|--------------|----------------------------------------------------------|-----|--|--|--|--|--|--|
|     | 1.1  | л васкground |                                                          |     |  |  |  |  |  |  |
|     | 1.2  | Previo       | bus Studies                                              | 1   |  |  |  |  |  |  |
|     |      | 1.2.1        | Water Management Strategy – Muchea Employment Node       | 1   |  |  |  |  |  |  |
|     |      | 1.2.2        | 2.2 Regional Water Management Strategy – Muchea          |     |  |  |  |  |  |  |
|     | 1.3  | Relev        | ant Guidelines and Policies                              | 2   |  |  |  |  |  |  |
|     |      | 1.3.1        | State Planning Policy 2.9                                | 2   |  |  |  |  |  |  |
|     |      | 1.3.2        | Better Urban Water Management                            | 3   |  |  |  |  |  |  |
|     |      | 1.3.3        | Shire of Chittering Local Planning Scheme No. 6          | 4   |  |  |  |  |  |  |
|     |      | 1.3.4        | Government Sewerage Policy                               | 5   |  |  |  |  |  |  |
|     |      | 1.3.5        | DoW Operational Policy 4.3: Identifying and Establishing |     |  |  |  |  |  |  |
|     |      |              | Waterways Foreshore Areas                                | 6   |  |  |  |  |  |  |
|     |      | 1.3.6        | DoW Interim Guideline: Developing a Local Water Managem  | ent |  |  |  |  |  |  |
|     |      |              | Strategy                                                 | 7   |  |  |  |  |  |  |
|     | 1.4  | Scope        | e of the LWMS                                            | 7   |  |  |  |  |  |  |
|     | 1.5  | Desig        | n Objectives                                             | 7   |  |  |  |  |  |  |
| 2.0 | EXIS |              | VIRONMENT                                                | 9   |  |  |  |  |  |  |
|     | 2.1  | Rainfa       | all                                                      | 9   |  |  |  |  |  |  |
|     | 2.2  | Physiography |                                                          |     |  |  |  |  |  |  |
|     |      | 2.2.1        | Topography                                               | 10  |  |  |  |  |  |  |
|     |      | 2.2.2        | Geology, Landforms and Soils                             | 11  |  |  |  |  |  |  |
|     |      | 2.2.3        | Soil Permeability                                        | 11  |  |  |  |  |  |  |
|     |      | 2.2.4        | Acid Sulphate Soils                                      | 11  |  |  |  |  |  |  |
|     |      | 2.2.5        | Phosphorus Retention Index                               | 12  |  |  |  |  |  |  |
|     | 2.3  | Hvdro        | bloav                                                    | 12  |  |  |  |  |  |  |
|     |      | 2.3.1        | Groundwater                                              | 12  |  |  |  |  |  |  |
|     |      | 2.3.2        | Surface Water                                            | 13  |  |  |  |  |  |  |
|     | 2.4  | Water        | Resources                                                | 15  |  |  |  |  |  |  |
|     |      | 2.4.1        | Groundwater                                              | 15  |  |  |  |  |  |  |
|     |      | 2.4.2        | Surface Water                                            | 15  |  |  |  |  |  |  |
|     | 2.5  | Water        | Quality                                                  | 16  |  |  |  |  |  |  |
|     |      | 2.5.1        | Groundwater                                              | 16  |  |  |  |  |  |  |
|     |      | 2.5.2        | Surface Water                                            | 17  |  |  |  |  |  |  |
|     | 2.6  | Wetla        | nds                                                      | 22  |  |  |  |  |  |  |
|     | 2.7  | Veget        | ation                                                    | 22  |  |  |  |  |  |  |
|     | 2.8  | Fauna        |                                                          | 22  |  |  |  |  |  |  |
|     | 2.9  | Land         | Uses and Potential Contamination                         | 22  |  |  |  |  |  |  |
| 3.0 | WΔT  | FRUSE        | SUSTAINABII ITY                                          | 24  |  |  |  |  |  |  |
|     | 3.1  | Water        |                                                          | 24  |  |  |  |  |  |  |
|     |      |              |                                                          |     |  |  |  |  |  |  |

|      | 3.2  | Water Efficiency Measures                         | 24 |
|------|------|---------------------------------------------------|----|
| 4.0  | LAN  | D CAPABILITY FOR ON-SITE EFFLUENT DISPOSAL        | 26 |
|      | 4.1  | Published Land Capability Ratings and Constraints | 26 |
|      | 4.2  | Soil Permeability                                 | 27 |
|      | 4.3  | Phosphorus Retention Index                        | 27 |
|      | 4.4  | Depth to Groundwater                              | 27 |
|      | 4.5  | Slope                                             | 28 |
|      | 4.6  | Watercourse Setbacks                              | 28 |
|      | 4.7  | System Selection and Location                     | 29 |
|      | 4.8  | Subsoil Drainage                                  | 30 |
| 5.0  | STOP | RMWATER MANAGEMENT STRATEGY                       | 31 |
|      | 5.1  | Principles and Objectives                         | 31 |
|      | 5.2  | Drainage Management System                        | 31 |
|      |      | 5.2.1 Through Drainage                            | 31 |
|      |      | 5.2.2 Lot Drainage                                | 32 |
|      |      | 5.2.3 Internal Road Drainage                      | 33 |
|      |      | 5.2.4 Major Storm Drainage                        | 33 |
|      | 5.3  | Surface Water Quality Management                  | 36 |
|      | 5.4  | Maintenance                                       | 36 |
| 6.0  | GRO  | UNDWATER MANAGEMENT STRATEGY                      | 38 |
|      | 6.1  | Groundwater Levels                                | 38 |
|      | 6.2  | Subsoil Drainage                                  | 38 |
|      | 6.3  | Groundwater Quality                               | 38 |
| 7.0  | LAN  | DSCAPING STRATEGY                                 | 39 |
| 8.0  | MON  | ITORING                                           | 40 |
| 9.0  | IMPL | EMENTATION AND FURTHER MANAGEMENT PLANS           | 41 |
| 10.0 | REFE | ERENCES                                           | 42 |

#### LIST OF TABLES

| Table | Title                                         | Page |
|-------|-----------------------------------------------|------|
| 1 1   | Decian Objectives                             | o    |
| 2.1   | Rainfall Intensity for Muchea                 | 10   |
| 2.2   | Groundwater Depths and Levels 21 August 2020  | 13   |
| 2.3   | 100-year ARI Flows in Existing Watercourses   | 14   |
| 2.4   | Groundwater Quality 17/8/2017                 | 18   |
| 2.4   | Surface Water Quality 17/8/2017               | 20   |
| 5.1   | Preliminary Swale Sizing – 100 year ARI Storm | 35   |
| 5.2   | 100yr ARI Culvert Flows                       | 36   |

#### LIST OF FIGURES

| Figure | Title                                        |
|--------|----------------------------------------------|
|        |                                              |
| 1      | Draft Muchea Industrial Park Structure Plan  |
| 2      | The Site and Surroundings                    |
| 3      | Proposed Plan of Subdivision                 |
| 4      | Pearce RAAF Mean Rainfall (p. 9 of document) |
| 5      | Physiography                                 |
| 6      | Groundwater                                  |
| 7      | DWER Bore Hydrographs                        |
| 8      | Surface Catchments                           |
| 9      | Drainage Concept                             |
| 10     | Lot Drainage Examples                        |
| 11     | Swale Profiles                               |
| 12     | Landscape Master Plan                        |

# LIST OF APPENDICES

| Appendix | Title                                          |
|----------|------------------------------------------------|
| А        | DWER LWMS Checklist                            |
| В        | Soil Logs                                      |
| С        | Geotechnical Report (Brown Geotechnical, 2021) |
| D        | Groundwater Measurements                       |
| Е        | Letter from Aqua Ferre Pty Ltd                 |
| F        | Flow Calculations                              |

# 1.0 INTRODUCTION

#### 1.1 Background

Tallangatta Farm (Lots 50 and 1456 Great Northern Highway, Muchea) is located on the corner of Muchea East Road and Great Northern Highway, Muchea. Tallangatta Beef Pty Ltd, the owner of Tallangatta Farm), has applied to the Shire of Chittering for the property to be rezoned from Agricultural Resource to General Industry. The *Muchea Industrial Park Structure Plan* (MIPSP) shows Tallangatta as part of Precinct 2 (General Industry Core) of the Muchea Industrial Park. Figure 1 shows the location of the site within the draft Muchea Industrial Park Structure Plan area.

The total area of Tallangatta is 213 hectares. Figure 2 shows the boundaries of the site. Figure 3 shows a preliminary conceptual plan of subdivision.

The Local Structure Plan for Tallangatta has been submitted to the Department of Planning, Lands & Heritage and the Shire of Chittering, and is currently being considered by these agencies.

# 1.2 **Previous Studies**

#### 1.2.1 <u>Water Management Strategy – Muchea Employment Node</u>

A Water Management Strategy (WMS) was prepared by Connell Wagner in 2008 in support of the District Structure Plan for the Muchea Employment Node. The WMS documented the existing environment of the MEN in broad terms, including soils and geology, topography, hydrology, vegetation and land uses. The WMS examined:

- the possible impacts of development on surface water and groundwater
- water demand and supply options;
- wastewater treatment and disposal, including leach drains, evaporation ponds and reuse.

The WMS recommended, among other things:

- Groundwater monitoring over at least two winter seasons should be undertaken to provide information on groundwater levels and quality.
- The preferred method of effluent disposal, based on desktop studies, was treatment by Aerobic Treatment Units (ATU) followed by disposal in evaporation ponds.
- Development should be set back from waterways in accordance with Water and Rivers Commission Note 23: *Determining Foreshore Reserves* (2001), with a default minimum setback of 30m.

- Stormwater runoff from lots and roads should be managed by infiltration and detention so that the runoff from a 1-year 1-hour storm is retained and infiltrated, and that peak flows from critical storms up to 100-year ARI are limited to pre-development rates.
- Water sensitive urban design measures should be implemented to meet catchment water quality targets as set out in the Swan-Canning Water Quality Improvement Plan (2009).

# 1.2.2 Regional Water Management Strategy – Muchea

The Muchea Regional Water Management Strategy (RWMS) was prepared by Emerge Associates for the Department of Planning, Lands & Heritage in 2019. The RWMS deals with the entire Muchea Employment Node, covering an area of 6,580 hectares.

The RWMS identifies environmental values, documents the hydrological regime and identifies requirements for wastewater management. The RWMS recommends further assessments prior to development including geotechnical, flora and fauna, wetlands, waterways, land capability and flooding.

# 1.3 Relevant Guidelines and Policies

#### 1.3.1 <u>State Planning Policy 2.9</u>

State Planning Policy 2.9: *Water Resources* (WAPC, 2006) lists the following key principles for total water cycle management:

- Consideration of all water sources (including wastewater) in water planning, maximising the value of water resources.
- Integration of water and land use planning.
- Sustainable and equitable use of all water sources, having consideration of the needs of all water users including the community, industry and the environment.
- Integration of water use and natural water processes.
- A whole-of-catchment integration of natural resource use and management.

SPP 2.9 also lists the following general objectives for water-sensitive urban design:

- to manage a water regime;
- to maintain and, where possible, enhance water quality;
- to encourage water conservation;

- to enhance water-related environmental values; and
- to enhance water-related recreational and cultural values.

Element 5 of *Liveable Neighbourhoods* Edition 3 (WAPC, 2004) identifies specific objectives and requirements for Urban Water Management. These are based on Best Planning Practices which are defined as the best practical approach for achieving water resource management objectives within an urban framework.

# 1.3.2 Better Urban Water Management

*Better Urban Water Management* (WAPC, 2008) sets out the following objectives for water sensitive urban design:

#### Water Conservation

• Consumption of 100kL/pp/yr including less than 40-60 kL/p/yr scheme water.

# Water Quantity

- Ecological Protection Maintain pre-development flow rates and volumes for the 1 year ARI event. Maintain or restore desirable environmental flows and/or hydrological cycles.
- Flood Management Maintain pre-development flow rates and volumes for the 100 year ARI event.

#### Water Quality

- Maintain pre-development nutrient outputs (if known) or meet relevant water quality guidelines (e.g. ANZECC & ARMCANZ, 2000).
- Treat all runoff in the drainage network prior to discharge consistent with the Stormwater Management Manual.
- As compared to a development that does not actively manage stormwater quality, achieve:
  - at least 80% reduction of Total Suspended Solids;
  - at least 60% reduction of Total Phosphorus;
  - at least 45% reduction of Total Nitrogen; and
  - at least 70% reduction of gross pollutants.

#### Mosquitoes and Midges

• Design detention structures so that, between the months of November and May, stormwater is fully infiltrated within 96 hours.

 Design permanent water bodies (where accepted by DWER) to maximise predation of mosquito larvae by native fauna.

# 1.3.3 Shire of Chittering Local Planning Scheme No. 6

"The following development requirements shall apply to the development and subdivision of land within industrial zones and to industrial land uses –

- (a) the effect on the environment by means of discharge of pollutants or contaminants into the air, ground and water be avoided, or managed within acceptable limits;
- (b) where an on-site wastewater disposal system is proposed
  - i. land capability assessment may be required to demonstrate the capability of the site to manage wastewater and the suitability of the proposed system;
  - ii. the use of fill and drains to achieve the required separation from groundwater is to be limited; and
  - iii. a suitable and unencumbered land application area is to be set aside to distribute treated sewage, where required;
- (c) within sewerage sensitive areas secondary treatment systems with nutrient removal are to be utilised;
- (d) notwithstanding any other provisions of this scheme, industrial development not connected to reticulated sewerage (for treatment on-site or off-site) is to be restricted to 'dry industry' being land uses that intend to dispose of wastewater on site to the environment of a kind and volume ordinarily discharged from a habitable building at a daily volume of less than 540 litres per 1,000m<sup>2</sup> of the site area [R10 equivalent];
- (e) where trade waste is to be managed and/or disposed of on-site or off-site the associated risks must be identified and addressed, including the vulnerability of the receiving environment where relevant;

The Scheme shows Tallangatta as part of a Water Prone Area (Ellen Brook Palusplain), within which the following special provisions apply:

#### "5.3.3 Planning Requirements

The local government will impose conditions on any Development approval relating to -

- a) the construction and occupation of any dwelling or outbuilding;
- b) the type of effluent disposal system used in this area shall be high performance with bacterial and nutrient stripping capabilities to the specifications of local government and the Health Department and shall be located in a position determined by local government.;

- c) minimum floor levels for any building above the highest known water levels;
- d) any land use that may contribute to the degradation of the surface or sub-surface water quality.
- e) no development other than for conservation purposes will be permitted within 30 metres of any natural water body; AMD 21 GG 3/4/09
- f) damming, draining or other developments which may alter the natural flow of surface water will not be permitted unless such works are part of an approved Catchment Management Plan."

Schedule 11 of the Scheme contains the following provisions that apply to the Muchea Industrial Park:

# "2.2 Environmental Management Plans

The following Environmental Management Plans shall be prepared and used to inform the design and proposed subdivision and development within the Structure Plan area. They shall be submitted as an additional detail of a Structure Plan unless otherwise determined by the Western Australian Planning Commission.

# 2.2.1 Local Water Management Strategy

The developer shall submit to the Local Authority a Local Water Management Strategy (LWMS) for approval as an additional detail of a Structure Plan pursuant to clause 5.19 in order to ensure that surface and ground waters are managed with the aim of maintaining the natural water balance. The Local Authority must notify and consult with the authority responsible for water and the environment on the proposed strategy in advertising the Local Structure Plan(s) pursuant to Part 4 of the deemed provisions.

The LWMS shall be prepared in accordance with Better Urban Water Management or its successor document.

The Structure Plan design shall respond to the LWMS required by 2.2.1 and shall be implemented to the satisfaction of the Local Authority, having regard to any advice from the Department of Water."

#### 1.3.4 Government Sewerage Policy

The Government Sewerage Policy (2019) requires that all new subdivision and development should be deep-sewered unless it is exempt for one of several reasons. For exempt developments, the policy establishes minimum site capability requirements and, where appropriate, density limits. In these cases, on-site effluent disposal may be approved where the responsible authority is satisfied that:

- each lot is capable of accommodating on-site sewage disposal without endangering public health or the environment; and
- the minimum site requirements for on-site sewage disposal as set out in the Policy can be met.

The Policy designates certain areas as Sewage Sensitive Areas (SSAs), including land:

- within the coastal catchment of the Swan Estuary; and
- within 1km upgradient or 250m downgradient (or overall 1km where the groundwater gradient is unknown) of a significant wetland.

Additional restrictions and requirements apply to on-site effluent disposal in SSAs, including:

- a minimum lot size of one hectare (unless exempted on a case-by-case basis);
- minimum vertical separation of 1.5m from the discharge point of effluent disposal systems to the highest groundwater table level; and
- secondary effluent treatment systems with nutrient removal.

The Policy shows all of Tallangatta except for about 6ha in the north-east corner within an SSA associated with the Ellen Brook catchment. The remaining 6ha is shown within an SSA associated with a significant wetland. Figure 3 shows the mapped SSAs.

The SSA mapping associated with the wetland is considered to be erroneous. The wetland in question (a Conservation category dampland) is located more than 300m upgradient of the site and is maintained by surface flow and/or locally perched groundwater (the mapped permanent groundwater table is 45-50m below the ground surface), so there is no possibility of groundwater flow from the site to the wetland. This matter is examined further in Section 4.1.

# 1.3.5 <u>DoW Operational Policy 4.3</u>: Identifying and Establishing Waterways Foreshore <u>Areas</u>

DoW Operational Policy 4.3 was published in 2012 and sets out the Department of Water's policy on defining and protecting foreshore reserves. It is intended to apply to all natural waterways within development areas. The policy sets out procedures for identifying, delineating and protecting foreshore areas.

The procedure may vary depending on the size and nature of the waterway and the nature of the proposed adjacent development. The policy provides for standard or nominal foreshore widths to be employed in some cases, such as small subdivisions and/or minor tributary creeks where the waterway is adequately protected and the proposed development poses an insignificant additional risk to the waterway.

# 1.3.6 DoW Interim Guideline: Developing a Local Water Management Strategy

The DoW LWMS guideline was published in 2008 and sets out the DoW's preferred format and content for LWMS documents. The guideline expands on the LWMS guidance provided in *Better Urban Water Management* (2008).

This LWMS has been prepared in accordance with the principles set out in the DoW guideline. Appendix A shows a completed checklist from the DWER guideline.

# 1.4 Scope of the LWMS

The scope of this LWMS is to:

- Document the existing environment on the site, in relation to soils, drainage, erosion, watercourses, groundwater and water-dependent ecosystems.
- Briefly describe the proposed development in relation to water management.
- Examine the capability of the site for on-site effluent disposal.
- Address relevant regulatory requirements and design criteria for water harvesting, setbacks to watercourses, groundwater management and drainage.
- Describe the strategies to be implemented for water conservation, watercourse protection, groundwater management and stormwater drainage.
- Outline the proposed monitoring program.
- Outline what is to be addressed in future Urban Water Management Plans.

#### 1.5 Design Objectives

Table 1.1 summarises the water-related design objectives for Tallangatta and the means by which they will be achieved in the LWMS and subsequent management plans.

# Table 1.1Design Objectives

| Design Aspect            | Design Objective                          | How Objective is to be Achieved                                                    |
|--------------------------|-------------------------------------------|------------------------------------------------------------------------------------|
| Water Conservation       | Ensure efficient and sustainable use of   | Only low water use industries permitted in Precinct 2.                             |
|                          | water resources                           | Use water efficient fixtures.                                                      |
|                          |                                           | Limit wastewater generation to 5.4 KL/ha/day.                                      |
|                          |                                           | Use non-potable water for irrigation.                                              |
|                          |                                           | Purchase groundwater licence(s) from existing holders within or outside the        |
|                          |                                           | project area.                                                                      |
|                          |                                           | Use water-efficient native species for landscaping.                                |
|                          |                                           | Irrigate landscape plantings only for 2 years.                                     |
| Groundwater Management   | Minimise impacts on groundwater level and | Subsoil drains set at or above pre-existing AAMGL, with fill used to provide       |
|                          | flows                                     | additional clearance if required.                                                  |
|                          | Minimise impacts on groundwater quality   | Finished floor levels of habitable buildings set at least 0.5m above controlled    |
|                          |                                           | groundwater level.                                                                 |
|                          |                                           | Treat runoff from minor storms in bioretention basins and swales.                  |
|                          |                                           | Minimise fertiliser and chemical use in landscaping areas.                         |
|                          |                                           | Use nutrient-removing alternative secondary systems for effluent disposal.         |
| Surface Water Management | Minimise impacts on surface water flow    | Retain and infiltrate runoff from 1-year ARI 1-hour storms in bioretention basins  |
|                          | rates, volumes and quality                | and swales.                                                                        |
|                          |                                           | Detain runoff from larger storms and control release from lots and overall site to |
|                          |                                           | pre-development flow rates.                                                        |
|                          |                                           | Convey existing flows through the site in stream reserves or roadside swales at    |
|                          |                                           | pre-development rates.                                                             |
|                          |                                           | Set effluent disposal facilities at least 100m back from natural waterways.        |
|                          |                                           | Sweep streets regularly to remove accumulated contaminants.                        |

# 2.0 EXISTING ENVIRONMENT

#### 2.1 Rainfall

Muchea, like the rest of the greater Perth region, has a strongly seasonal rainfall, with most of the annual rain falling between May and September in association with winter cold fronts. Occasional heavy falls may occur from summer thunderstorms. The long-term average annual rainfall for Pearce RAAF Base (located 6.5km south of the site) is 679.7mm, of which 77% falls between the months of May and September.

Figure 4 shows a rainfall occurrence chart for Pearce RAAF. Table 2.1 shows rainfall intensity, frequency and duration for Muchea.



#### Location: 009053 PEARCE RAAF

Figure 4

Pearce RAAF Mean Rainfall

#### IFD Design Rainfall Depth (mm)

Rainfall depth for Durations, Exceedance per Year (EY), and Annual Exceedance Probabilities (AEP). FAQ for New ARR probability terminology

|          | Annual Exceedance Probability (AEP) |      |      |                |      |      |      |  |  |  |
|----------|-------------------------------------|------|------|----------------|------|------|------|--|--|--|
| Duration | 63.2%                               | 50%# | 20%* | 10%            | 5%   | 2%   | 1%   |  |  |  |
| 1 min    | 1.51                                | 1.68 | 2.26 | 2.69           | 3.14 | 3.77 | 4.29 |  |  |  |
| 2 min    | 2.61                                | 2.89 | 3.82 | 4.49           | 5.18 | 6.18 | 7.00 |  |  |  |
| 3 min    | 3.52                                | 3.90 | 5.17 | 6.11           | 7.07 | 8.47 | 9.62 |  |  |  |
| 4 min    | 4.28                                | 4.75 | 6.34 | 7.50           | 8.72 | 10.5 | 11.9 |  |  |  |
| 5 min    | 4.92                                | 5.48 | 7.34 | 7.34 8.71 10.1 |      | 12.2 | 13.9 |  |  |  |
| 10 min   | 7.23                                | 8.07 | 10.9 | 13.0           | 15.2 | 18.2 | 20.8 |  |  |  |
| 15 min   | 8.75                                | 9.76 | 13.2 | 15.7           | 18.3 | 22.0 | 25.1 |  |  |  |
| 20 min   | 9.90                                | 11.0 | 14.9 | 17.7           | 20.6 | 24.8 | 28.2 |  |  |  |
| 25 min   | 10.8                                | 12.1 | 16.2 | 19.3           | 22.5 | 27.0 | 30.7 |  |  |  |
| 30 min   | 11.6                                | 13.0 | 17.4 | 20.7           | 24.0 | 28.8 | 32.8 |  |  |  |
| 45 min   | 13.6                                | 15.1 | 20.1 | 23.9           | 27.7 | 33.3 | 37.9 |  |  |  |
| 1 hour   | 15.1                                | 16.7 | 22.2 | 26.4           | 30.7 | 36.9 | 42.1 |  |  |  |
| 1.5 hour | 17.4                                | 19.3 | 25.6 | 30.4           | 35.4 | 42.8 | 49.1 |  |  |  |
| 2 hour   | 19.3                                | 21.3 | 28.3 | 33.6           | 39.4 | 47.8 | 55.1 |  |  |  |
| 3 hour   | 22.3                                | 24.6 | 32.7 | 39.0           | 45.9 | 56.3 | 65.2 |  |  |  |
| 4.5 hour | 25.8                                | 28.5 | 37.9 | 45.4           | 53.8 | 66.4 | 77.6 |  |  |  |
| 6 hour   | 28.7                                | 31.6 | 42.1 | 50.6           | 60.1 | 74.7 | 87.7 |  |  |  |
| 9 hour   | 33.1                                | 36.5 | 48.7 | 58.7           | 70.0 | 87.5 | 103  |  |  |  |
| 12 hour  | 36.6                                | 40.3 | 53.9 | 65.0           | 77.5 | 96.9 | 114  |  |  |  |
| 18 hour  | 42.0                                | 46.3 | 61.7 | 74.2           | 88.1 | 110  | 129  |  |  |  |
| 24 hour  | 46.1                                | 50.8 | 67.5 | 80.8           | 95.3 | 118  | 138  |  |  |  |
| 30 hour  | 49.5                                | 54.5 | 72.1 | 85.8           | 101  | 124  | 143  |  |  |  |
| 36 hour  | 52.4                                | 57.7 | 75.9 | 89.8           | 105  | 128  | 147  |  |  |  |
| 48 hour  | 57.2                                | 62.9 | 82.1 | 96.1           | 111  | 133  | 152  |  |  |  |
| 72 hour  | 64.9                                | 71.2 | 91.5 | 106            | 120  | 141  | 158  |  |  |  |
| 96 hour  | 71.4                                | 78.2 | 99.4 | 114            | 128  | 148  | 164  |  |  |  |
| 120 hour | 77.4                                | 84.6 | 107  | 122            | 136  | 157  | 173  |  |  |  |
| 144 hour | 83.4                                | 91.0 | 115  | 131            | 146  | 168  | 185  |  |  |  |
| 168 hour | 89.4                                | 97.3 | 123  | 140            | 157  | 181  | 200  |  |  |  |

Note:

# The 50% AEP IFD **does not** correspond to the 2 year Average Recurrence Interval (ARI) IFD.

Rather it corresponds to the 1.44 ARI. \* The 20% AEP IFD **does not** correspond to the 5 year Average Recurrence Interval (ARI) IFD. Rather it corresponds to the 4.48 ARI.

#### Table 2.1 Rainfall Intensity for Muchea

# 2.2 Physiography

#### 2.2.1 Topography

Tallangatta is located on the western footslopes of the Gingin Scarp, just west of the Darling Fault. The site slopes generally westward from a high point of 93m AHD in the north-east to a low of 53m AHD at the north-west corner. The gradient averages about 2.5%. The steepest slopes are in the north-east, reaching up to 10% in places. Figure 5 shows the topography.

Issued: 31 October 2018

# 2.2.2 Geology, Landforms and Soils

Most of Tallangatta is mapped by the GSWA (Gozzard, 1982) as Guildford Formation (Qpa), with soils consisting of pebbly silt (Mgs<sub>1</sub>). This unit is described as having generally low permeability and shallow groundwater, with a low to moderate capability for effluent and drainage disposal. The foundation stability may vary, with differential settling possible in clayey areas. Sand pads are generally necessary for foundations.

The eastern part of the property is mapped as Colluvium (Qc), with soils of medium to coarse grained brown sand ( $S_5$ ) and sandy silt (Msg). The  $S_5$  soil type has high permeability and generally high capability for drainage and effluent disposal. The Msg type has low permeability and consequently low suitability for effluent disposal. Both soil types provide good foundations when compacted.

A small area in the north-east of the property is mapped as Leederville Formation (Klb), with soils derived from siltstone (ST<sub>1</sub>). This unit is described as moderately stable but prone to weathering when disturbed, with low permeability making it of low suitability for drainage or effluent disposal.

Figure 5 shows the GSWA mapping. Drilling at nine locations across the site in June 2017 (Figure 5) generally confirmed the GSWA mapping. Soil logs from the drilling are attached in Appendix B.

# 2.2.3 Soil Permeability

The permeability of the site soils will vary depending on the clay content. Test pumping during sampling of the on-site bores indicated hydraulic conductivities in the subsoil (1-5 m bgl) ranging from about 0.06 m/day to 0.42 m/day. The permeability of the top 2m of the soil profile is expected to be higher.

Brown Geotechnical carried out falling-head permeability tests at three locations at 0.5-1m depth across the property (Figure 5) in 2020. The tests returned estimated permeabilities ranging from  $8.5 \times 10^{-5}$  m/day in dense gravelly sandy clay to 53 m/day in sandy gravel. The geotechnical report is attached in Appendix C.

For preliminary drainage and effluent design purposes, a conservative permeability of 1 m/day has been assumed. Constant-head permeability tests in accordance with the method set out in Australian Standard AS1547:2012: – *On-site Domestic Wastewater Management* will be undertaken prior to subdivision.

# 2.2.4 Acid Sulphate Soils

The DBCA maps the site as Low to Nil risk of Acid Sulphate Soils (ASS). The nearest mapped High ASS risk area is a palusplain about 1.6km to the south.

Bore sampling in August 2020 found no indicators of potential or actual ASS in the groundwater. No further investigation of ASS is considered to be necessary.

# 2.2.5 Phosphorus Retention Index

Previous experience has shown that the gravelly and silty clay soils of the Guildford Formation and other alluvial and colluvial soils generally have moderate to high PRI.

PRI is a measure of the ability of a soil to adsorb and retain phosphorus from solution. A high PRI indicates that a soil is unlikely to leach phosphorus to the water table. Typical ranges for PRI values in soils are as follows:

| PRI Range  | Rating          | Typical soils               |
|------------|-----------------|-----------------------------|
| 0 – 0.5    | Very Low        | Bassendean Sand             |
| 2 – 4      | Low – Moderate  | Karrakatta Sands            |
| 5 – 12     | Moderate – High | Cottesloe Sands             |
| 12 – 20    | High            | Crushed Limestone, Limesand |
| 20 – 1000+ | Very High       | Clay                        |

The DWER recommends a minimum PRI of 15 for soils beneath infiltration basins and swales. The site soils are expected to meet or exceed this requirement. PRI testing of soils beneath proposed infiltration basins will be undertaken before subdivision.

# 2.3 Hydrology

#### 2.3.1 Groundwater

Groundwater flows from east to west beneath the site at a gradient of between 0.01 and 0.02. The low permeability of the soil profile means that groundwater throughflow would be very low.

Regional mapping by the DWER shows superficial groundwater present at minimum elevations of 48m to 55m AHD. Figure 6 shows the DWER contours.

Groundwater measurements in nine bores in and around the site on 21 August 2020 (Figure 6), during a drier than average winter, gave the water depths and levels shown in Table 2.2. Groundwater measurements collected from the site since 2017 are detailed in Appendix D.

Simultaneous measurements of DWER bores located 1,400m south (Swan GWA 2-98) and 40m north (Gnangara Monitoring GD20) enabled Average Annual Maximum (AAMGL) and Maximum (MGL) groundwater levels at the site to be calculated. Figure 6 shows the calculated AAMGL and depth to AAMGL contours across the site. Figure 7 shows the hydrographs of the DWER bores.

Table 2.2 shows that the groundwater levels measured in August 2020 were about 0.4m below the AAMGL. The winter of 2020 was drier than average, and the levels measured on 21 August are considered to approximate the peak for the year.

Figure 6 shows that the AAMGL is within one metre of the ground surface in parts of the west, south and north-west of the site. The AAMGL is predicted to intersect the ground surface in small areas in the west, south and north-east.

Filling and/or subsoil drainage is likely to be necessary in areas of the site where the depth to groundwater is less than 1.5m in order to provide groundwater clearance for roads, buildings and effluent disposal. The requirement for filling will depend on the size of the lots and the uses to which they are put. Most of the site has sufficient slope and depth to groundwater that subsoil drainage alone may be sufficient to create the necessary groundwater clearance for building, effluent disposal and drainage.

| Bore<br>(Figure 6) | Depth<br>(mbgl) | Level<br>(m AHD) | AAMGL<br>(m AHD) | MGL<br>(m AHD) | Depth to<br>AAMGL (m) | Depth to<br>MGL (m) |
|--------------------|-----------------|------------------|------------------|----------------|-----------------------|---------------------|
| TB1                | 4.64            | 60.61            | 61.037           | 61.617         | 4.213                 | 3.633               |
| TB2                | 2.95            | 82.05            | 82.477           | 83.057         | 2.523                 | 1.943               |
| ТВЗ                | 0.7             | 79.85            | 80.277           | 80.857         | 0.273                 | -0.307              |
| TB4                | 0.41            | 54.39            | 54.817           | 55.397         | -0.017                | -0.597              |
| TB5                | >3.45           | <63.55           |                  |                |                       |                     |
| TB6                | 0.37            | 53.63            | 54.057           | 54.637         | -0.057                | -0.637              |
| TB7                | 1.14            | 57.26            | 57.687           | 58.267         | 0.713                 | 0.133               |
| TB8                | 1.11            | 64.14            | 64.567           | 65.147         | 0.683                 | 0.103               |
| ТВ9                | 0.56            | 74.24            | 74.667           | 75.247         | 0.133                 | -0.447              |
| MB1                | 0.285           | 51.305           | 51.732           | 52.312         | -0.142                | -0.722              |
| MB3                | 1.59            | 50.99            | 51.417           | 51.997         | 1.163                 | 0.583               |
| MB5                | 0.77            | 56.02            | 56.447           | 57.027         | 0.343                 | -0.237              |
| WB2                | >4.98           | <65.89           |                  |                |                       |                     |
| GD20               | 0.88            | 60.6             | 59.85            | 61.35          | 1.63                  | 0.13                |
| 2-98               | 2.117           | 56.173           | 56.6             | 57.18          | 1.69                  | 1.11                |

# Table 2.2Groundwater Depths and Levels 21 August 2020

# 2.3.2 Surface Water

A significant creek flows from east to west along the northern edge of the property. Two smaller drains flow across the site near the southern boundary. All of the watercourses are seasonal or ephemeral. The remainder of the property would drain by sheet flow during heavy rainfall. Figure 8 shows the drainage lines and their catchments.

The northern creekline is a natural waterway, incised at the eastern side of the property but flatter and shallower at the western side. The depth of the creek channel is estimated at 1m in the east and 0.5m at the west, with a width of 5-10m. The creek drains an upstream catchment of about 360ha and an additional catchment of 250ha within the property.

Historical Landgate aerial photography shows that the middle drainage line is an artificial drain, constructed between 1965 and 1977. It is shallow and slightly incised, about 0.5m deep and 8-10m wide. It has an upstream catchment of about 38ha and an internal catchment of another 30ha.

The southernmost drainage line is also a constructed drain, dating from between 1977 and 1979. It is slightly incised, about 0.5m deep with a width ranging from 4-8m in the east to 12m in the west. It drains an upstream catchment of about 117ha and an internal catchment of another 3ha.

All drainage from the site flows eventually into Ellen Brook, the major drainage feature of the region. The Ellen Brook catchment is the largest sub-catchment of the Swan-Canning River system, contributing 6% of the total annual flow, and is the largest single contributor of nutrients to the system (WA Govt, 2011).

Ellen Brook has a surface catchment of 715km<sup>2</sup> (WRC, 2012). The Brook rises as Chandala Brook about 22km north-northwest of the site. The Brook is seasonal, flowing generally between May and November with an annual flow ranging from 2.1 to 48.6 GL (SRT, 2009).

Table 2.3 summarises estimated 100-year ARI (average recurrence interval) flows under current conditions in the three drainage lines, calculated using the Rational Method (Institute of Engineers Australia, 1987). A runoff coefficient of 0.3 for the 100-year storm was assumed for all catchments. Table 2.3 also shows estimated water depths, widths and flow velocities in the watercourses at the upstream and downstream ends of the site, calculated with Manning's open channel flow formula (Fang, 2002), using a roughness coefficient (Manning's n) of 0.03.

| Drainage Line                         |            | North | Middle | South |
|---------------------------------------|------------|-------|--------|-------|
| Upstream Catchment (ha)               |            | 360   | 38     | 117   |
| 100-yr ARI Flow (m <sup>3</sup> /sec) |            | 7.04  | 1.21   | 3.9   |
| Water Depth (m)                       | Upstream   | 0.7   | 0.2    | 0.5   |
|                                       | Mid-point  | 0.8   | -      | -     |
|                                       | Downstream | 0.4   | 0.2    | 0.5   |
| Top Water Width (m)                   | Upstream   | 4.6   | 9.4    | 8.2   |
|                                       | Mid-point  | 6.9   | -      | -     |
|                                       | Downstream | 28    | 11     | 11    |
| Flow Velocity (m/sec)                 | Upstream   | 3.5   | 1.0    | 1.5   |
|                                       | Mid-point  | 2.0   | -      | -     |
|                                       | Downstream | 1.1   | 1.1    | 1.1   |

| Table 2.3 | 100-vear ARI Flows in Existing W | atercourses |
|-----------|----------------------------------|-------------|
|           |                                  |             |

The flow calculations in Table 2.3 suggest that the northern creek is likely to overtop its banks at its western end during a 100-year storm, creating flooding to about 15m each side

of the creek. The eastern part of the northern creek, and the two southern drainage lines, appear unlikely to overtop in a 100-year storm.

The flow velocity in the eastern part of the northern creek is relatively high and may cause scouring of the creek bed in a 100-year storm. Given that a storm of this size may not have occurred since the creekline and its catchment were cleared for farming, such an event may alter the shape of the watercourse. Some protection works (such as revegetation, riffling and barriers) may be necessary to reduce the risk of this occurring. Given the relatively steep topography in the vicinity of the creekline, any scouring is likely to result in minor straightening of the watercourse rather than any major change in its alignment.

The calculations shown in Table 2.3 are preliminary and based on desktop estimates of channel morphology and catchment characteristics. They should not be used for design purposes.

# 2.4 Water Resources

# 2.4.1 Groundwater

Tallangatta is within the Eclipse Hill Subarea of the Gingin Groundwater Area (GWA) for the superficial and surficial aquifers, the Southern Scarp sub-area for the semi-confined (Mirrabooka) aquifer, the Cowalla sub-area for the confined Leederville-Parmelia aquifer and the Chandala sub-area for the Yarragadee aquifer. Groundwater allocations within the GWA are managed under the Gingin Groundwater Areas Allocation Plan (DoW, 2015).

Under the plan (as of 2015), the Eclipse Hill (superficial), Southern Scarp (Mirrabooka) and Cowalla (Leederville) sub-areas are over-allocated and no new allocations are available.

The Gingin Groundwater Allocation Plan shows that the Eclipse Hill Subarea has a total allocable resource of 1,050 ML/a in the superficial and 3,000 ML/a in the surficial aquifer. The DWER has advised (M. Ong, 2017 pers. comm.) that the superficial aquifer resource is fully allocated but 1,600 ML/a is available for allocation in the surficial aquifer.

In the deeper confined aquifers, the Leederville aquifer (Cowalla Subarea) has a total of 17,617 ML/a, which is fully allocated, and the Yarragadee aquifer (Chandala Subarea) has 1,050 ML/a, of which 194 ML/a is available for allocation.

# 2.4.2 Surface Water

The three drainage lines that flow across Tallangatta have a combined upstream catchment of approximately 515 hectares. Using the average annual rainfall of 653mm for Pearce RAAF Base (BoM, 2017) and an overall catchment runoff coefficient of 5% (CSIRO, 2009), it can be estimated that an average of approximately 168 ML/a of surface flow may be available for capture and use.

Page 16

This may be augmented by the capture and storage of stormwater from within the developed industrial area. Using the same average rainfall and an overall post-development runoff coefficient of 20%, the industrial area could yield approximately another 278 ML/a.

Capture and storage of surface runoff at this scale is problematic for several reasons:

- The quantity available is variable, with annual rainfall at Pearce RAAF having been recorded as low as 50% of the mean.
- Storage of the water would require deep ponds covering several hectares.
- Unless the ponds were covered, a substantial portion (average 2m depth each year) of the stored water would be lost to evaporation.
- Captured surface water, particularly stormwater from streets, would be unsuitable for potable use.

For these reasons, capture of surface water, while possibly feasible in particular circumstances, is unlikely to be a viable water supply option for the whole estate.

# 2.5 Water Quality

# 2.5.1 Groundwater

Groundwater samples were collected from the nine on-site bores in August 2017. The samples show that the groundwater quality across the site is generally moderate, with some notable features:

- Nitrogen (both total and NO<sub>x</sub>) levels were elevated across most of the site, particularly in Bore TB1 in the centre of the property. This is probably due largely to the high density of cattle then being stocked on the property. Nitrogen levels are expected to decline once cattle are removed from the property.
- Bore TB3 is quite saline (Conductivity 12 mS/cm = 7,200 mg/L) as well as being very acidic (ph 3.7, Total Acidity 96) and high in some metals (aluminium, potassium, iron, lead and zinc). These are consistent with its origin as seepage from clay and siltstone. The sulphate level is also elevated, although the low sulphate/chloride ratio (0.09) and the elevation and soil type suggests that these characteristics are not indicative of the presence of ASS.
- Dissolved phosphorus levels were low across the site.

Table 2.4 shows the groundwater quality data from August 2017.

# 2.5.2 Surface Water

Surface water samples were collected from six locations (three inflowing, three outflowing) in August 2017 (Figure 8). The results show that the surface flows into and out of the site are generally of similar and moderate quality. The water in the northern creek has elevated salinity, but shows little of the high acidity found in the adjacent Bore TB3. Water flowing from the east in the vicinity of the Midland Brick quarry had very low pH but only moderate acidity.

Table 2.5 shows the surface water data from August 2017.

# Groundwater Quality 17/8/2017 (see Figure 6 for bore locations) Table 2.4

|        | Parameter                 | Unit  | Aquatic<br>Ecosystems <sup>a</sup> | Irrigation<br>Water <sup>b</sup> | TB1  | TB2   | ТВЗ   | TB4   | TB5   | TB6   | TB7   | TB8   | TB9   | Notes<br>a. ANJ<br>b. ANJ<br>c. DEC<br>d. ANJ                        |  |
|--------|---------------------------|-------|------------------------------------|----------------------------------|------|-------|-------|-------|-------|-------|-------|-------|-------|----------------------------------------------------------------------|--|
|        | Total Nitrogen            | mg/L  | 1.2                                | 5                                | 19   | 0.9   | 9.5   | 5.3   | 2     | 2.3   | 0.6   | 1.2   | 6.2   | notes<br>ZECC<br>Iand r<br>ZECC<br>ZECC<br>ZECC                      |  |
| nts    | NOx                       | mg/L  | 0.15                               | ng                               | 19   | 0.72  | 0.15  | 3.7   | 1.4   | 1.2   | 0.18  | 0.25  | 3.8   | s "no<br>C (2(<br>C (2(<br>C (2(<br>C (2(<br>C (2(<br>C (2(<br>C (2( |  |
| utrie  | Total Kjeldahl Nitrogen   | mg/L  | ng                                 | ng                               | <0.2 | 0.2   | 9.4   | 1.6   | 0.6   | 1.1   | 0.4   | 1     | 2.4   | guic<br>300)<br>s; Di<br>300)<br>300)<br>1 dai                       |  |
| Ĩ      | Total Phosphorus          | mg/L  | 0.065                              | 0.05                             | 0.89 | 0.09  | 0.54  | 0.49  | 0.43  | 0.48  | 0.04  | 0.3   | 3.5   | delina<br>Aqua<br>Issol <sup>i</sup><br>Irriga<br>Irriga             |  |
|        | Reactive Phosphorus       | mg/L  | 0.04                               | ng                               | 0.01 | <0.01 | 0.03  | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | e".<br>ved I<br>ation<br>ation<br>ation                              |  |
|        | рН                        |       | 6.5-8.0                            | 6-8.5                            | 5.9  | 6.8   | 3.7   | 6.8   | 6.5   | 7.3   | 6.6   | 7     | 7.4   | na d<br>≘cos<br>⊡trigg<br>trigg<br>trigg<br>trigg<br>ls.             |  |
|        | Conductivity              | mS/cm | 0.12-0.3                           | 1.3                              | 1    | 0.53  | 12    | 2.2   | 0.29  | 0.7   | 0.49  | 0.55  | 0.63  | enot<br>yste<br>ils ar<br>ger v<br>ger v                             |  |
|        | Salinity (from EC)        | mg/L  | 72-180                             | 780                              | 600  | 318   | 7200  | 1320  | 174   | 420   | 294   | 330   | 378   | es "r<br>m tri<br>alue<br>gers                                       |  |
| _      | Acidity                   | mg/L  | 40 <sup>c</sup>                    | ng                               | 19   | 5     | 96    | <5    | 13    | 9     | 19    | 7     | 7     | not a<br>gger<br>fres<br>s (lo<br>s for A<br>s for A                 |  |
| sica   | Alkalinity                | mg/L  | ng                                 | ng                               | 10   | 28    | <5    | 21    | 22    | 100   | 50    | 38    | 67    | naly:<br>valu<br>shwa<br>ng-te<br>SS                                 |  |
| Phy    | Acidity:Alkalinity Ratio  |       | 1 <sup>c</sup>                     | ng                               | 1.90 | 0.18  | >19.2 | <0.24 | 0.59  | 0.09  | 0.38  | 0.18  | 0.10  | sed"<br>les (<br>lter e<br>affec<br>ture                             |  |
|        | Hardness                  | mg/L  | ng                                 | 60-350                           | 95   | 64    | 1310  | 208   | 27    | 56    | 59    | 63    | 48    | Nutri<br>rriga<br>and                                                |  |
|        | Sulphate                  | mg/L  | ng                                 | ng                               | 60   | 26    | 310   | 29    | 18    | 66    | 17    | 40    | 23    | lent,<br>/ster<br>fodd                                               |  |
|        | Chloride                  | mg/L  | ng                                 | 350                              | 240  | 150   | 3600  | 690   | 94    | 110   | 100   | 110   | 130   | pH a<br>ns 9<br>ndwa<br>er fo                                        |  |
|        | SO <sub>4</sub> :Cl Ratio |       | 0.5                                | ng                               | 0.25 | 0.17  | 0.09  | 0.04  | 0.19  | 0.60  | 0.17  | 0.36  | 0.18  | and (<br>0% s<br>10(<br>ater.<br>r gra                               |  |
|        | Calcium                   | mg/L  | ng                                 | ng                               | 5    | 6     | 30    | 9     | 4.2   | 5.8   | 5.6   | 9.1   | 7.2   | Conc<br>speci<br>) yea                                               |  |
| suc    | Sodium                    | mg/L  | ng                                 | 230                              | 130  | 61    | 2100  | 350   | 36    | 110   | 54    | 60    | 80    | luctiv<br>les p<br>ars)                                              |  |
| jor le | Potassium                 | mg/L  | ng                                 | ng                               | 0.2  | 0.4   | 60    | 0.6   | 1.2   | <0.1  | 0.9   | 3.8   | 6.6   | vity a<br>roter                                                      |  |
| Maj    | Magnesium                 | mg/L  | ng                                 | ng                               | 20   | 12    | 300   | 45    | 4     | 10    | 11    | 9.9   | 7.2   | are fo                                                               |  |
|        | Iron                      | mg/L  | ng                                 | 10                               | 0.26 | 0.09  | 2.4   | 0.3   | 0.07  | 0.36  | 0.04  | 0.02  | 0.16  | ))<br>ept                                                            |  |

|        | Aluminium         | mg/L | 0.08   | 5     | 1.7     | 0.3     | 9.2     | 1.1     | 0.2     | 0.8     | <0.1    | <0.1    | 0.3     |
|--------|-------------------|------|--------|-------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| als    | Arsenic (III & V) | mg/L | 0.136  | 0.1   | <0.002  | <0.002  | 0.002   | 0.001   | <0.002  | 0.001   | <0.002  | <0.002  | <0.002  |
|        | Cadmium           | mg/L | 0.0004 | 0.01  | <0.002  | <0.002  | <0.002  | <0.002  | <0.002  | <0.002  | <0.002  | <0.002  | <0.002  |
| Met    | Chromium (VI)     | mg/L | 0.006  | 0.1   | <0.002  | <0.002  | <0.002  | <0.002  | <0.002  | <0.002  | <0.002  | <0.002  | <0.002  |
| solved | Copper            | mg/L | 0.0018 | 0.2   | <0.01   | <0.01   | <0.01   | <0.01   | <0.01   | <0.01   | <0.01   | <0.01   | <0.01   |
|        | Mercury           | mg/L | 0.0019 | 0.002 | <0.0002 | <0.0002 | <0.0002 | <0.0002 | <0.0002 | <0.0002 | <0.0002 | <0.0002 | <0.0002 |
| Ö      | Nickel            | mg/L | 0.013  | 0.2   | <0.01   | <0.01   | <0.01   | <0.01   | <0.01   | <0.01   | <0.01   | <0.01   | <0.01   |
|        | Lead              | mg/L | 0.0056 | 2     | <0.01   | <0.01   | 0.02    | <0.01   | <0.01   | <0.01   | <0.01   | <0.01   | <0.01   |
|        | Zinc              | mg/L | 0.015  | 2     | 0.08    | <0.01   | 0.04    | 0.02    | <0.01   | 0.01    | 0.01    | <0.01   | <0.01   |

Table 2.5Surface Water Quality 17/8/2017<br/>(see Figure 8 for sample locations)

|        | Parameter                | Unit  | Aquatic<br>Ecosystems <sup>a</sup> | Irrigation<br>Water <sup>b</sup> | TS1<br>(inflow) | TS2<br>(outflow) | TS4<br>(outflow) | TS5<br>(outflow) | TS6<br>(inflow) | TS7<br>(inflow) | Notes<br>a. ANJ<br>b. ANJ<br>c. DEV<br>d. ANJ                                                                                                                |
|--------|--------------------------|-------|------------------------------------|----------------------------------|-----------------|------------------|------------------|------------------|-----------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | Total Nitrogen           | mg/L  | 1.2                                | 5                                | 0.8             | 0.9              | 3.5              | 1.1              | 3.8             | 0.2             | notes<br>ZEC(<br>ZEC(<br>ZEC(<br>ZEC(<br>ZEC(                                                                                                                |
| nts    | NOx                      | mg/L  | 0.15                               | ng                               | 0.01            | 0.1              | 0.81             | <0.01            | 0.93            | <0.01           | "no guid<br>(2000)<br>rivers; D<br>(2000)<br>(2000)<br>(2000)<br>(2000)<br>s and dai                                                                         |
| utrie  | Total Kjeldahl Nitrogen  | mg/L  | ng                                 | ng                               | 0.8             | 0.8              | 2.7              | 1.1              | 2.9             | 0.2             |                                                                                                                                                              |
| ž      | Total Phosphorus         | mg/L  | 0.065                              | 0.05                             | 0.09            | 0.1              | 0.16             | 0.08             | 0.08            | 0.09            | lelin<br>Aqua<br>Ssol<br>Irriga<br>Irriga                                                                                                                    |
|        | Reactive Phosphorus      | mg/L  | 0.04                               | ng                               | <0.01           | <0.01            | <0.01            | <0.01            | <0.01           | <0.01           | ie". na denot<br>latic Ecosyste<br>lved Metals al<br>lation trigger v<br>indicator trigg<br>nimals.                                                          |
|        | рН                       |       | 6.5-8.0                            | 6-8.5                            | 6.3             | 6.1              | 9.3              | 7.5              | 10.4            | 3.8             |                                                                                                                                                              |
|        | Conductivity             | mS/cm | 0.12-0.3                           | 1.3                              | 3.2             | 3.3              | 0.95             | 1                | 1               | 2.2             |                                                                                                                                                              |
|        | Salinity (from EC)       | mg/L  | 72-180                             | 780                              | 1920            | 1980             | 570              | 600              | 600             | 1320            | re fo<br>re fo<br>yers<br>yers                                                                                                                               |
| _      | Acidity                  | mg/L  | 40 <sup>c</sup>                    | ng                               | 6               | <5               | <5               | <5               | <5              | 27              | not a<br>gger<br>for fres<br>for ∠<br>for ∠<br>for ∠                                                                                                         |
| sica   | Alkalinity               | mg/L  | ng                                 | ng                               | 10              | <5               | 100              | 11               | 130             | <5              | nalysed"<br>values (Nutrient, pH ;<br>shwater ecosystems 9<br>ng-term irrigation up t<br>ng-affected groundw<br>SS-affected groundw<br>pasture and fodder fr |
| Phy    | Acidity:Alkalinity Ratio |       | 1 <sup>c</sup>                     | ng                               | 0.60            | -                | <0.02            | <0.45            | <0.04           | >5.4            |                                                                                                                                                              |
|        | Hardness                 | mg/L  | ng                                 | 60-350                           | 353             | 382              | 94               | 90               | 76              | 145             |                                                                                                                                                              |
|        | Sulphate                 | mg/L  | ng                                 | ng                               | 52              | 62               | 98               | 55               | 110             | 170             |                                                                                                                                                              |
|        | Chloride                 | mg/L  | ng                                 | 350                              | 890             | 980              | 190              | 290              | 220             | 570             |                                                                                                                                                              |
|        | SO₄:Cl Ratio             |       | 0.5                                | ng                               | 0.06            | 0.06             | 0.52             | 0.19             | 0.50            | 0.30            | and (<br>0% s<br>o 100<br>ater.<br>or gra                                                                                                                    |
|        | Calcium                  | mg/L  | ng                                 | ng                               | 16              | 16               | 28               | 8.2              | 24              | 3.8             | Conc<br>speci<br>9 yea                                                                                                                                       |
| suc    | Sodium                   | mg/L  | ng                                 | 230                              | 540             | 630              | 110              | 120              | 120             | 330             | ducti<br>lies p<br>ars)<br>J anii                                                                                                                            |
| jor le | Potassium                | mg/L  | ng                                 | ng                               | 14              | 16               | 27               | 7.4              | 28              | 5.6             | vity a<br>roteo                                                                                                                                              |
| Maj    | Magnesium                | mg/L  | ng                                 | ng                               | 76              | 83               | 5.9              | 17               | 4               | 33              | are for ction exc                                                                                                                                            |
| Ī      | Iron                     | mg/L  | ng                                 | 10                               | 0.1             | 0.1              | 0.07             | 0.05             | <0.01           | 2.8             | )<br>ept                                                                                                                                                     |

| ssolved Metals | Aluminium         | mg/L | 0.08   | 5     | <0.1    | <0.1    | <0.1    | <0.1    | <0.1    | 1.2     |
|----------------|-------------------|------|--------|-------|---------|---------|---------|---------|---------|---------|
|                | Arsenic (III & V) | mg/L | 0.136  | 0.1   | 0.002   | 0.002   | 0.002   | <0.002  | 0.002   | <0.002  |
|                | Cadmium           | mg/L | 0.0004 | 0.01  | <0.002  | <0.002  | <0.002  | <0.002  | <0.002  | <0.002  |
|                | Chromium (VI)     | mg/L | 0.006  | 0.1   | <0.002  | <0.002  | <0.002  | <0.002  | <0.002  | <0.002  |
|                | Copper            | mg/L | 0.0018 | 0.2   | <0.01   | <0.01   | <0.01   | <0.01   | <0.01   | <0.01   |
|                | Mercury           | mg/L | 0.0019 | 0.002 | <0.0002 | <0.0002 | <0.0002 | <0.0002 | <0.0002 | <0.0002 |
| Di             | Nickel            | mg/L | 0.013  | 0.2   | <0.01   | <0.01   | <0.01   | <0.01   | <0.01   | 0.02    |
|                | Lead              | mg/L | 0.0056 | 2     | <0.01   | <0.01   | <0.01   | <0.01   | <0.01   | <0.01   |
|                | Zinc              | mg/L | 0.015  | 2     | <0.01   | <0.01   | <0.01   | <0.01   | <0.01   | 0.01    |

# 2.6 Wetlands

The north-west and north-east corners of Tallangatta are mapped as Multiple Use palusplain (seasonally waterlogged plain) by the DBCA. Palusplain also covers an extensive area west of the property in the floodplain of Ellen Brook. Figure 8 shows the mapped wetlands.

Multiple Use category wetlands are degraded and are regarded by the DBCA as developable, provided that the hydrological functions (mainly drainage) of the wetland are maintained or replicated.

No other wetlands are present on or immediately downstream of the property.

# 2.7 Vegetation

Tallangatta is cleared except for a number of scattered paddock trees (some apparently planted) and a small group of denser trees around the creekline in the north-east corner. The paddock trees are mostly located in the northern two-thirds of the property, with the southern third being almost entirely cleared.

The paddock trees appear to be mostly mature Marri and Wandoo, with some large specimens up to 15-20 tall. Flooded Gums are present near the creekline in the north-east corner of the property.

The DPAW database show no recorded rare or priority flora or threatened ecological communities on the property. Given the degree of clearing, it is unlikely that any rare or threatened species or communities would be present.

There is no riverine, riparian or wetland-dependent vegetation present on the property.

#### 2.8 Fauna

The largely cleared project area offers little habitat for native fauna, apart from disturbancetolerant species such as kangaroos (which may graze in the paddocks from refuges to the east) and birds which might nest in some trees.

There are no riverine, riparian or wetland habitats present on the property.

#### 2.9 Land Uses and Potential Contamination

Historical Landgate aerial photography shows that Tallangatta has been cleared and used primarily for broadacre farming since before 1965. The photographs show stock pens

(possibly for pigs or poultry) near the farmhouse in the centre of the property between 1965 and about 2000; however this use appears to have been small-scale and essentially domestic. Residual contamination from pesticides such as dieldrin could be present around the site of the stock pens.

Between 2004 and 2011 the property was used as an intensive live cattle export depot. Between about 2006 and 2010, manure from the feedlot operation was stockpiled in windrows about 250m east of the cattle handling sheds in the middle of the property. When the feedlot operation ended the stockpiled compost was removed from the site.

Intensive agriculture is regarded as a potentially contaminating land use by the Department of Environmental Regulation (DER, 2004); however, the agricultural chemicals available for use since 2004 do not include many of the chemicals often responsible for persistent soil contamination, such as organochlorine pesticides.

Feedlots are potential sources of soil and groundwater contamination by nutrients (nitrogen and phosphorus), organic matter and pathogens (particularly faecal bacteria). All of these contaminants are mobile and/or short-lived, and are not likely to result in persistent soil or groundwater contamination or to pose a long-term risk to health.

The DWER Contaminated Sites Database shows no records of contamination on or near Tallangatta. A desktop study carried out by Connell Wagner in 2007 for the Muchea Employment Node Structure Plan identified a number of sites of possible contamination in the greater Employment Node; it is unknown whether any of these were in Tallangatta. The Structure Plan recommended that a detailed contamination study, involving a site history and possibly soil sampling, be undertaken to investigate the sites identified by Connell Wagner and any others subsequently identified.

Given the previous land uses on Tallangatta, it is expected that any contamination found by the detailed study will be low-level, localised and readily remediated to a level suitable for industrial use.

# 3.0 WATER USE SUSTAINABILITY

#### 3.1 Water Supply

Water will be required for both potable and non-potable purposes. The water requirement for the fully developed project area is unknown. Calculations based on a study carried out by GHD for the Karratha Gap Industrial Estate suggest that approximately 4 KL/ha/day will be required for both potable and non-potable uses. Over the 213ha of the site (assuming 80% developable land), this equates to a total water demand of approximately 250ML/yr. This is less than the volume available in the surficial aquifer, but water from this source is unlikely to be suitable for potable use and the available yield may vary from place to place. The presence of existing bores and windmills on Tallangatta indicates that water is available in at least some parts of the property.

The Leederville aquifer is likely to be the preferred source for potable supply due to its generally higher quality and lower risk of contamination. Non-potable groundwater demand is likely to be limited to landscape irrigation, as industries within this precinct will be restricted to those with low water usage.

Potable water will be supplied to the project area by a licensed water provider. A proposed water project for the Lower Chittering Valley is currently in development by Aqua Ferre Pty Ltd, which includes construction of a water treatment facility on Lot 2 Reserve Rd, Chittering. Aqua Ferre is in the process of applying for a Water Service Provider's Licence from the Economic Regulation Authority (ERA). Aqua Ferre has confirmed that it has the capacity within its proposed licence to supply Muchea Industrial Park with potable water. Discussions with Aqua Ferre are ongoing. A letter from Aqua Ferre confirming this understanding is attached in Appendix E.

For non-potable uses, purchase of water entitlements from existing licensed users within or outside of the project area is likely to be necessary. The landowners will negotiate with existing licence holders within and outside of the project area with a view to purchasing an existing groundwater allocation, and will submit a groundwater licence application to the DWER in due course.

# 3.2 Water Efficiency Measures

Precinct 2 of the MIP will be designed as a low-water-use precinct. Only industries with low water consumption will be permitted in this precinct. This is driven largely by the hydrology of the site and its proximity to Ellen Brook, which demands that wastewater disposal be minimised.

Potable water use within the project area will be limited to consumption for domestic use in toilets, bathrooms and kitchens. The Shire of Chittering Town Planning Scheme No. 6 limits wastewater generation in industrial zones to 5,400 litres per hectare per day.

Groundwater will be used mainly for irrigation of landscape plantings and swales. These areas will be irrigated only during the establishment stage (one or two years). The Landscape Master Plan estimates total plantings of 40ha of sedges, shrubs and trees within the project area.

The water demand for irrigation in a given year will depend on the staging of subdivision and development. If the project area were developed over ten years, the demand for irrigation water (at the DWER's default rate of 4,500 KL/ha/yr) over that ten year period would be in the order of 18 ML/yr, decreasing in subsequent years.

# 4.0 LAND CAPABILITY FOR ON-SITE EFFLUENT DISPOSAL

#### 4.1 Published Land Capability Ratings and Constraints

Extrapolation of mapping by the Department of Agriculture (King & Wells, 1990) suggests that the western part of Tallangatta would be mapped as Guildford Formation (Gf2): "Plain with imperfectly drained yellow duplex soils with sand to sandy loam topsoil", and the eastern part as Reagan (Re2): "Gentle slopes with deep, well drained brownish or earthy sands situated below Re1". King & Wells (1990) rated the capability of these landform types for on-site effluent disposal as follows:

| Landform | Capability | Limiting Factor(s)                                      |
|----------|------------|---------------------------------------------------------|
| Gf2      | Fair       | Microbial purification ability, soil absorption ability |
| Re2      | High       | None                                                    |

The limitations on the capability of the Gf2 landform unit relate to the imperfect drainage of the unit due to its silty soils and sometimes occurrence of clay horizons. The drilling carried out in June 2017 showed that the soils on the site possessed a sandy or gravelly loam profile to at least 1.5m depth, suggesting that they were well drained. Permeability measurements by Bayley Environmental Services in 2017 and Brown Geotechnical in 2020 returned permeabilities in the top 5m of the soil profile between 8.6x10<sup>-4</sup> and 53 m/day. These results suggest that the permeability of the Gf2 soils on the site poses no significant constraint to effluent disposal.

The Government Sewerage Policy maps most of the project area as being within a Sewage Sensitive Area (SSA) due to its location within the catchment of the Swan-Canning Estuary and/or within 1km of significant wetlands. The Policy places additional site requirements in terms of groundwater clearance and lot density on effluent disposal within SSAs, including a lower lot size limit of 1ha. Figure 3 shows the SSA boundaries over the subject land.

The north-eastern part of Tallangatta is mapped as SSA by the GSP under the category of land "...within one kilometre up-groundwater-gradient and 250 metres down-groundwater-gradient of a significant wetland; or where the groundwater gradient is unknown or seasonably variable within one kilometre of the significant wetland...". Closer inspection shows that the wetland in question in this case, a Conservation Category dampland located 315m east of the project area, is upgradient of the site and maintained by surface water inflow from further upgradient. There appears to be no way that effluent disposal at the site could affect this dampland, and therefore the SSA mapping in this case is considered invalid. The GSP allows for SSA mapping to be refined through site-specific investigations as in this case.

# 4.2 Soil Permeability

Australian Standard AS1947:2012 recommends a minimum hydraulic conductivity of 0.06m/day for on-site effluent disposal without special design. The testing method set out in the *Health (Treatment of Sewage and Disposal of Effluent and Liquid Waste) Regulations 1974* implies a minimum conductivity of 0.11m/day without specific approval by the Director-General of Public Health. Permeabilities of this order are generally found in weakly structured or massive clays.

Permeability measurements by Bayley Environmental Services in 2017 and Brown Geotechnical in 2020 returned permeabilities in the top 5m of the soil profile of  $8.6 \times 10^{-4}$  to 53 m/day.

Constant-head permeability tests in accordance with the method set out in Australian Standard AS1547:2012: – *On-site Domestic Wastewater Management* will be undertaken prior to subdivision.

# 4.3 Phosphorus Retention Index

The Health Department's draft *Code of Practice for Onsite Sewage Management* (2012) recommends a PRI of at least 20 for soils beneath effluent irrigation areas.

Previous experience has shown that the gravelly and silty clay soils of the Guildford Formation and other alluvial and colluvial soils generally have moderate to high PRI.

PRI testing of soils beneath proposed infiltration basins will be undertaken before subdivision. The soils will be modified by the importation of high-PRI fill if necessary to achieve an overall PRI of at least 20, in line with the Health Department's draft Code of Practice (2012).

# 4.4 Depth to Groundwater

The Government Sewerage Policy (GSP) (WA Govt, 2019) requires that land used for effluent disposal in sewage sensitive areas must have a minimum clearance of 1.5m from the effluent discharge point (e.g. base of leach drain or ATU drip lines) to the highest groundwater level. Under the Policy, the required clearance can be achieved by filling but not by drainage. Outside of sewage sensitive areas, the minimum groundwater clearance requirement for loams and heavy soils is 0.6m.

The groundwater measurements and modelling carried out in August 2020 indicate that the average annual maximum groundwater level (AAMGL) is within 1.5m of the ground surface in the south, west and north-east of the project area (Figure 6). Filling of effluent disposal

sites will be required in these areas to permit on-site effluent disposal in accordance with the GSP.

Where filling is used to achieve the necessary groundwater clearance, subsoil drains will be installed at the AAMGL to minimise groundwater rise into the fill. Because drainage is not being used to create the required clearance, this is believed to comply with the GSP.

#### 4.5 Slope

The Government Sewerage Policy prohibits on-site effluent disposal on land with a slope of more than 1 in 5 (20%), in order to prevent runoff of effluent.

The slope of the subject land is mostly less than 5% and does exceed 10%. Effluent disposal on the site is therefore unconstrained by slope.

# 4.6 Watercourse Setbacks

The Department of Water & Environmental Regulation (DWER, 2016) recommends that effluent disposal systems should be located at least 100m from waterways and wetlands. The Government Sewerage Policy requires a 100m setback from waterways, significant wetlands and drains discharging directly into waterways or significant wetlands without treatment.

For the purposes of these requirements, "waterway" is defined as a natural watercourse as defined in the *Rights in Water and Irrigation Act 1914*. Based on site inspections and historical aerial photography as described in Section 2.3.2, the northern creekline is a natural waterway, while the middle and southernmost drainage lines are artificial drains.

Under the structure plan for Tallangatta, the northern creekline will be retained in its current alignment within a POS reserve that extends between 30m and 150m from the creekline. All effluent disposal areas will be set back at least 100m from this creekline.

The middle and southern existing drainage lines will be realigned into roadside bioretention swales, where dense vegetation will treat the water flowing down the drains to reduce flow velocities and remove suspended sediments, nutrients and other contaminants.

The Government Sewerage Policy provides that reduced setbacks from drains may be allowed where it can be demonstrated that the reduced setbacks will not have a significant impact on the environment or public health. In this case, setbacks of less than 100m from bioretention swales are considered acceptable and necessary because:

 all effluent disposal will be by means of alternative effluent disposal systems with nutrient removal capability (Section 4.7);

- the clayey soils and high PRI of the site (Section 2.2.5) mean that leachate emanating from the effluent disposal systems will be of high quality;
- the water in the roadside swales will be treated by infiltration, vegetation uptake and soil adsorption before it reaches any downstream water body; and
- imposing a requirement for 100m setbacks would severely constrain and in some cases prevent the siting of effluent disposal systems on lots

A setback of 6m from subsoil drains is considered necessary and justified because:

- the subsoil drains will be located upslope of the effluent disposal fields (Section 4.8) and will drain only clean groundwater that has been filtered through the soil profile;
- all effluent disposal will be by means of alternative effluent disposal systems with nutrient removal capability (Section 4.7);
- the drained water will be treated by infiltration and vegetation uptake within the roadside swales before being released to downstream watercourses (Section 5.5.2);
- a greater separation would reduce the effectiveness of the subsoil drains in limiting groundwater rise within the effluent disposal areas; and
- the clayey soils and high PRI of the site (Section 2.2.5) mean that the drained water will be of high quality.

The differing sized lots within the subject site will offer a range of options for siting of development elements and effluent disposal systems within each lot. At the time of subdivision and development approval, the siting of individual effluent disposal systems will be subject to review and approval by the Shire of Chittering and other agencies.

It is concluded that the proposed system of effluent disposal in the project area will pose minimal risk to the environment or public health and will meet all setback requirements set out in current government policies.

# 4.7 System Selection and Location

All effluent generated within the subdivision will be treated and disposed by means of individual on-site effluent disposal systems. All lots in low-lying areas where the AAMGL is less than 1.5m below the natural ground surface will be required to employ nutrient-attenuating secondary treatment systems such as aerobic treatment units (ATUs) with high-PRI irrigation areas or modified leach drain systems (e.g. Filtrex). Lots in higher areas or with deeper groundwater may employ conventional septic systems and leach drains.

ATU irrigation areas will be filled to approximately 2m above the AAMGL in order to provide 1.5m clearance from the AAMGL to the effluent drip lines as required under the Government Sewerage Policy (2019), allowing for 0.3m groundwater mounding and 0.2m soil cover over the drip lines. Fill used for this purpose will be either sourced from on site or imported. The soil will be tested and modified if necessary to confirm a PRI of at least 20.

The ATU irrigation area or leach drain length on each lot will be sized to suit the expected population of the lot. As a rough rule of thumb, each full-time employee on site will require approximately 23m<sup>2</sup> of effluent irrigation area or 4.4m of leach drain. Treated ATU effluent may be disposed of via leach drains, which may reduce the area required for disposal by up to two thirds at the cost of a greater height of fill.

The effluent disposal requirements of each lot will vary depending on the soil profile, groundwater depth and expected site population. Site testing on each lot prior to development will be required to determine the optimum location and type of effluent disposal system.

# 4.8 Subsoil Drainage

Where fill is used to raise pads for effluent disposal, subsoil drains will be placed upslope of the filled pad to prevent groundwater rise into the fill. The drains will be placed at least 6m upslope from the drip lines or leach drains. The drains will be set with their inverts at or above the AAMGL and will discharge via free-draining outlets into the roadside swales, where the water will be further treated by infiltration and vegetation uptake within the swales. Because the water will be draining from high-PRI soil (see Section 2.2.5), it will be of high quality.

# 5.0 STORMWATER MANAGEMENT STRATEGY

#### 5.1 **Principles and Objectives**

The stormwater management strategy aims to comply with the principles and objectives for stormwater management identified in the *Stormwater Management Manual for WA* (DoW, 2004) and *Better Urban Water Management* (WAPC, 2008).

Nutrient concentrations and loads in water leaving the site will be managed to comply with the targets of the draft *Swan Canning Water Quality Improvement Plan* (SRT, 2009) for the Ellen Brook catchment, as follows:

| • | Winter median TP concentration: | 0.1 mg/L    |
|---|---------------------------------|-------------|
| • | Winter median TN concentration: | 1.0 mg/L    |
| • | Annual TP yield:                | 0.03 kg/ha  |
| • | Annual TN yield:                | 0.31 kg/ha. |

# 5.2 Drainage Management System

The drainage system will be designed to maintain surface flow rates and volumes within and from the developed site at their pre-development levels. The drainage design presented here is conceptual and will be refined in the detailed subdivision designs. Figure 9 shows an overview of the conceptual drainage design.

The priorities for managing the various sizes of storm event will be:

- 1 year ARI Infiltrate all flows as close to the source as possible. Maintain predevelopment flow rates and volumes. Minimise export of nutrients and sediments.
- 5 year ARI Detain water prior to discharge. Maintain pre-development flow rates and volumes. Maintain amenity and serviceability. Prevent scouring and damage.
- 100 year ARI Maintain pre-development flow rates and volumes. Prevent flooding and damage.

#### 5.2.1 <u>Through Drainage</u>

The existing creekline entering at the north-east of the property will be retained in its current alignment and protected within a POS reserve. The two artificial drainage lines that enter towards the south-east corner of the property will be realigned into roadside bioretention swales.

The swales will be sized to accommodate the flow from a 100-year ARI critical storm from both the upstream and internal catchments. A series of low weirs within the swales will capture and infiltrate road runoff from storms up to 1-year ARI 1-hour. The inverts of the swales will be at or above the AAMGL.

The swales will be configured as living streams and densely planted with sedges and shrubs to slow the water flow and help to remove sediments and nutrients from the water.

# 5.2.2 Lot Drainage

Runoff from roofs, paved surfaces and hardstand areas within private lots from storms up to 1-year ARI 1-hour duration (about 15mm) will be retained and infiltrated within each lot in soakwells, swales, basins and/or landscaping areas. For preliminary design purposes it has been assumed that all parts of the lots except for landscaping and effluent irrigation areas will be developed to hardstand, internal roads or buildings. These will be subject to detailed design on individual lots.

The in-lot drainage structures will also be sized to capture the excess runoff from roofs, paved surfaces and hardstand areas from critical storms up to 100-year ARI. In most cases the critical storm (that producing the highest flow rate) will be of less than fifteen minutes' duration, and the volume of flow will be less than that from the 1-year 1-hour storm.

All runoff from within each lot will be directed to the bioretention/detention basin. Overflows from the basins will run into the roadside bioretention swales, either directly or, for those lots that do not have a downslope road frontage, via drainage easements.

The management of excess runoff from each lot will vary depending on the situation of the lot. In general:

 On lots that front a public road on the downslope side, the part of the lot near the road will be filled as necessary to raise its level above the outer embankment of the roadside swale and allow overflow drainage to flow into the roadside swale. The height of filling will generally be between 0m and 0.8m. Depending on the slope of the lot, the filling will extend between about 10m and 90m from the lot boundary. This filling will be carried out by the subdivider/developer during the construction of the roads.

The internal basin will be located in the fill and will capture the 1-year 1-hour storm runoff and excess flow from critical storms up to 100-year ARI, and will overflow into the roadside swale.

Figure 10 shows a conceptual layout and profile of a typical lot in this situation.

• On lots that adjoin another lot on the downslope side (i.e. that do not have a downslope road frontage), the in-lot basin will overflow via a bund or swale along the downslope lot boundaries to the nearest roadside swale. Where the flow needs to cross another lot
before reaching the road reserve, an easement nominally 10m wide will be created in favour of the Shire of Chittering. Swales and/or bunds may be created within the easements as necessary to direct the overflow. These swales and bunds will be constructed by the developer at the time of creation of the lots. Figure 9 shows the conceptual layout of the drainage easements. Figure 10 shows a conceptual layout of a typical lot of this type.

## 5.2.3 Internal Road Drainage

Runoff from public roads from up to the 1-year ARI 1-hour storm will be retained and infiltrated in roadside bioretention swales. The inverts of the swales will be at or above the AAMGL. Figure 9 shows the preliminary layout of the roadside swale network.

The swales will be constructed with low internal weirs set at a height that captures the 1year 1-hour storm. In preliminary drainage calculations (Appendix F), the swales have been set at 0.5m to 0.8m deep with base width of 3m to 5m, side slopes of 1 in 3 and with 0.3m high internal weirs. The weirs may incorporate underdrains to promote infiltration of the 1year flows.

The configuration of the swales and internal weirs will be subject to detailed design prior to subdivision, including:

- the height of the swale inverts at or above the AAMGL;
- the depth and width of the swales;
- the height of the internal weirs;
- the composition of the swale floors, designed to maximise nutrient uptake;
- planting of the swales with dense sedges and shrubs to maximise nutrient uptake; and
- the possible inclusion of underdrains within the swales to promote infiltration of 1-year ARI flows.

Figure 11 shows conceptual profiles of the roadside swales.

### 5.2.4 Major Storm Drainage

Road runoff and lot overflows from larger storms will overtop the weirs and flow along the swales to the western boundary, where it will enter the roadside drains and culverts on Great Northern Highway. The peak flow rate of drainage out of the site will be controlled to be no greater than that existing before development.

Figure 9 shows the overall drainage layout and the 100-year ARI flow paths. Table 5.1 summarises the 100-year flows in the swales. The flow calculations are detailed in Appendix F.

The drainage from the site flows beneath Great Northern Highway via eleven culverts, as shown on Figure 9. These were constructed in the context of a rural setting, in which

culverts may be designed to allow some ponding upstream on adjacent land during major storms.

Survey of the culverts adjacent to the site, coupled with data provided by Main Roads WA from its IRIS database, enabled the flow capacities of the culverts to be calculated using Manning's Open Channel Flow Formula. The calculations show that, assuming overall peak flow rates following development are controlled to be no greater than the pre-development flows, the combined capacity of the culverts is more than double the expected 100-year peak flow from the project area and upstream.

In the centre of the site (culverts CH35.41 to CH36.12), the predicted peak flow rate exceeds the instantaneous capacity of the culverts by approximately 40%. In this section, the existing roadside drain on Great Northern Highway appears to sufficient capacity to store the excess flow without backing up into the project area. If further detailed design calculations show that additional storage is necessary, the Public Open Space area adjacent to the boundary, measuring approximately 0.87ha, may be configured as a flood storage area. Table 5.2 shows the culvert flow calculations.

| Swale<br>Segment<br>(Figure 9) | Contributing<br>Segments | Contributing<br>Lots   | Contributing<br>Upstream<br>Catchments | Total<br>Cumulative<br>Peak Flow (L/s) <sup>1</sup> | Long<br>Slope <sup>2</sup> | Swale Base<br>Width (m) | Swale Depth<br>(m) | Height Over<br>0.3m Weir<br>(m) <sup>4</sup> |
|--------------------------------|--------------------------|------------------------|----------------------------------------|-----------------------------------------------------|----------------------------|-------------------------|--------------------|----------------------------------------------|
| A1                             | A1-A5                    | 10-16, 42-49n          | 46U,47U,49U,49NU                       | 2892.34                                             | 0.0179                     | 5                       | 0.6                | 0.28                                         |
| A2                             | A2                       | 10-13                  |                                        | 501.31                                              | 0.0066                     | 4                       | 0.5                | 0.15                                         |
| A3                             | A3                       | 43                     |                                        | 273.18                                              | 0.0044                     | 3                       | 0.5                | 0.13                                         |
| A4                             | A4                       | 46                     | 46U                                    | 1230.24                                             | 0.0140                     | 2                       | 0.6                | 0.25                                         |
| A5                             | A5                       | 47-49N                 | 46U,47U,48U,49NU                       | 1748.01                                             | 0.0086                     | 3.5                     | 0.6                | 0.30                                         |
| A6                             | A6                       |                        |                                        | 245.51                                              | 0.0190                     | 4                       | 0.5                | 0.07                                         |
| B1                             | B1                       |                        |                                        | 163.29                                              | 0.0182                     | 2                       | 0.5                | 0.07                                         |
| C1                             | C1                       | 22                     |                                        | 1946.20                                             | 0.0185                     | 3                       | 0.6                | 0.27                                         |
| C2                             | C2                       | 23,24                  |                                        | 2121.04                                             | 0.0016                     | 4.5                     | 0.8                | 0.48                                         |
| C3                             | C3,C4                    | 20,21,32-41            |                                        | 1610.66                                             | 0.0071                     | 3.5                     | 0.6                | 0.30                                         |
| C4                             | C4                       | 33-41                  |                                        | 1415.40                                             | 0.0079                     | 3                       | 0.6                | 0.29                                         |
| D1                             | D1-D5                    | 25-30,49S-<br>51,54,55 | 49SU 50U 51U DRU                       | 1430.40                                             | 0.0172                     | 3                       | 0.6                | 0.26                                         |
| D2                             | D2-D5                    | 26,27,49S-<br>51,54,55 | 49SU,50U,51U,DRU                       | 1390.13                                             | 0.0209                     | 4                       | 0.5                | 0.20                                         |
| D3                             | D3-D5                    | 49S-51,54,55           | 49SU,50U,51U,DRU                       | 1600.45                                             | 0.0080                     | 3.5                     | 0.6                | 0.29                                         |
| D4                             | D4,D5                    | 49S-51                 | 49SU,50U,51U,DRU                       | 2892.34                                             | 0.0179                     | 5                       | 0.6                | 0.28                                         |
| D5                             | D5                       | 49S-51                 | 49SU,50U,51U,DRU                       | 501.31                                              | 0.0066                     | 4                       | 0.5                | 0.15                                         |

#### Table 5.1 Preliminary Swale Sizing – 100 yr ARI Critical Storm

1. Based on runoff coefficient for the 100-year ARI storm of 0.85 and 100% development of lots to hardstand.

2.

Based on existing topography; this may change with filling and levelling of lots and road reserves. Calculated using Manning's Open Channel Flow Formula (Fang, 2000) for a trapezoidal channel with 1:3 side slopes and Manning's *n* of 0.04. 3.

| Culvert(s)<br>Figure 9) | No. & Size     | Length (m) | Slope  | Total<br>Capacity<br>(m <sup>3</sup> /s) <sup>1</sup> | 100 yr<br>Flow<br>(m <sup>3</sup> /s) <sup>2</sup> | Storage<br>Required<br>(m <sup>3</sup> ) <sup>3</sup> | GNH Drain<br>Volume<br>(m <sup>3</sup> ) <sup>4</sup> |
|-------------------------|----------------|------------|--------|-------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|
| CH36.64                 | 5 x 1.2 x 0.5  | 17.3       | 0.0068 | 7619                                                  | 6799                                               | 0                                                     | 1090                                                  |
| CH36.43                 | 1 x 0.9 x 0.45 | 14.8       | 0.0142 | 7010                                                  | 0700                                               | 0                                                     | 1009                                                  |
| CH36.12                 | 1 x 0.6        | 17.2       | 0.0152 |                                                       |                                                    |                                                       |                                                       |
| CH35.98                 | 2 x 0.5        | 14.8       | 0.0172 |                                                       |                                                    |                                                       |                                                       |
| CH35.92                 | 1 x 0.6        | 14.8       | 0.0110 | 3594                                                  | 4086                                               | 1002                                                  | 2750                                                  |
| CH35.73                 | 1 x 0.9 x 0.6  | 16         | 0.0086 | 3304                                                  | 4900                                               | 1093                                                  | 2750                                                  |
| CH35.58                 | 1 x 0.45       | 16         | 0.0088 |                                                       |                                                    |                                                       |                                                       |
| CH35.41                 | 1 x 0.45       | 16         | 0.0025 |                                                       |                                                    |                                                       |                                                       |
| CH35.23                 | 5 x 1.2 x 0.75 | 20.8       | 0.0057 | 12000                                                 | 1620                                               | 0                                                     | 1101                                                  |
| CH35.02                 | 2 x 1.2 x 0.45 | 25.6       | 0.0092 | 12090                                                 | 1030                                               | U                                                     | 1191                                                  |
| CH34.79                 | 4 x 1.2 x 0.75 | 25.6       | 0.0094 | 10487                                                 | 3630                                               | 0                                                     | 30                                                    |

## Table 5.2 100yr ARI Culvert Flows

1. Calculated by Manning's Open Channel Flow Equation as set out in Fang (2000) using pipe roughness coefficient of 0.016 (wet-cast concrete).

2. Calculated by Rational Method using runoff coefficients of 0.85 for road reserves and lots, 0.35 for upstream catchments and POS.

3. Calculated by modified COPAS Equation.

4. Calculated from length of drain within segment, 4m base width and 1:3 side slopes.

### 5.3 Surface Water Quality Management

The drainage system will be designed to maximise on-site retention of nitrogen, phosphorus, sediments and other contaminants. This will be achieved by:

- Retaining and infiltrating all lot runoff from storms up to 1-year ARI in bioretention basins within the lots.
- Retaining and infiltrating all road runoff from storms up to 1-year ARI 1-hour duration (estimated by the DWER to carry more than 99% of total flows and nutrients) in vegetated bioretention swales with a minimum soil PRI of 15.
- Conveying all runoff from storms between 1-year and 100-year ARI in densely vegetated bioretention swales to allow suspended particles to be filtered out.

## 5.4 Maintenance

The drainage system has been designed to require minimal maintenance. The following will be required to ensure that the system continues to function as designed:

• Regular cleaning of side entry and junction pits, inlet pits and small culverts. More frequent (perhaps annual )cleaning may be required during the construction phase.

- Tending and maintenance of swales and other vegetated drainage features to remove litter, control weeds and encourage the growth of native species.
- Pruning, mulching or removal of vegetation in swales as necessary to maintain ground fuel loads below 8 tonnes/ha.

### 6.0 GROUNDWATER MANAGEMENT STRATEGY

### 6.1 Groundwater Levels

The drainage system for the site is designed to minimise changes to the existing groundwater regime. Roadside swales and subsoil drains will be set with their inverts at or above the AAMGL. Subsoil drainage within lots will be limited to filled areas used for buildings or effluent disposal.

### 6.2 Subsoil Drainage

Subsoil drainage will be employed within some lots where necessary to maintain existing maximum groundwater levels beneath building pads and effluent disposal areas. Subsoil drains may also be employed within road reserves to prevent groundwater rise from damaging the road base and pavement.

All subsoil drains will be set with their invert at or above the AAMGL. Therefore, changes to the groundwater hydrology of the site will be minimal. The subsoil drains will discharge into roadside swales via free-draining outlets.

### 6.3 Groundwater Quality

The sampling undertaken to date indicates that the groundwater beneath the site contains low to moderate concentrations phosphorus but elevated levels of nitrogen. This is to be expected given the nature of the soils and the land use history of the site.

The relationship between nutrient inputs and exports is complex, especially in the case of phosphorus, which travels through the soil profile as a "front" in a complex series of adsorption and desorption reactions. Nitrogen is subject to denitrification and mineralisation in the soil and groundwater. As a result, nutrient exports from the site at present will be a reflection of nutrient inputs over the last several decades, modified by soil hydrology and nutrient retention capacity.

The aim of nutrient management will be to limit nutrient inputs to the site so that nutrient outputs are minimised. As an industrial precinct, the area of fertilised gardens and lawns will be small. Landscaping areas including street trees, swales and vegetation buffers will be established with minimal fertilisers and irrigation.

Measures available to minimise nutrient inputs and exports in the development will include:

- regular street sweeping to remove accumulated contaminants; and
- selection of native species with low water and fertiliser requirements for public open space and landscape areas.

## 7.0 LANDSCAPING STRATEGY

Landscaping of the site will focus on the use of species with low water demand. Planting areas will include bioretention swales and basins, landscape buffers (to a minimum of 10% of the area of each lot) and street trees. The plantings will not be irrigated after the establishment phase. No turf grass will be planted.

The plantings in swales, basins and effluent irrigation areas will include a high proportion of species recommended in the Monash University (2014) *Vegetation Guidelines for Stormwater Biofilters in the South-West of Western Australia.* 

Fertiliser use will be minimal. New tube stock plantings will be fertilised with slow-release nitrogen and phosphorus tablets on establishment and thereafter will be unfertilised.

The bioretention basins and swales will be densely planted with inundation-tolerant species including sedges and low shrubs in order to stabilise the basins and maximise their ability to take up nitrogen from the water.

The total area to be planted is approximately 40 hectares. If all of this area were planted simultaneously during the establishment phase, approximately 180 ML of water would be required to irrigate the new plantings for the first year. As the project area is likely to be developed in a number of stages, the requirement for irrigation water is likely to be spread out over a number of years, with only a small part of the total demand being required in any one year.

The density of planting will be controlled to keep flammable ground fuel loads below 8 tonnes/ha, in accordance with the Bushfire Hazard Assessment (Eco logical Australia, 2020).

Figure 12 shows the conceptual landscaping strategy. The landscaping strategy is described in more detail in the Landscape Master Plan (BES, 2021).

### 8.0 MONITORING

Baseline water quality results for the site are shown in Tables 2.4 and 2.5. Groundwater levels and quality will continue to be monitored and compared against baseline levels and relevant guidelines. Water quality in surface drains will be monitored upstream and downstream of the project area to determine what (if any) impacts the development may be having on the watercourses.

Water quality sampling will be conducted nominally once a year in late winter. Detailed water monitoring and response procedures will be developed as part of the Urban Water Management Plans to be prepared for each stage of subdivision.

### 9.0 IMPLEMENTATION AND FURTHER MANAGEMENT PLANS

Further planning and subdivision of the subject land will be carried out in accordance with the general water management principles set out in this LWMS. Subdivision of lots in the structure plan area may be carried out by individual owners as they see fit, in accordance with the framework of the LWMS.

An Urban Water Management Plan (UWMP) will be prepared as a condition of subdivision approval for each stage of subdivision. The UWMP will present the detailed design of the stormwater drainage system within that stage.

The developer of each stage of subdivision will maintain the drainage system, landscaped areas and water monitoring program within that stage until two years after that stage of subdivision is completed. At the end of that time the responsibility for monitoring and management will be handed over to the Shire of Chittering.

### 10.0 REFERENCES

- ANZECC & ARMCANZ (2000). *National Water Quality Management Strategy*. Australian and New Zealand Environment and Conservation Council, Canberra.
- BoM (2017). Climate Statistics for Australian Locations. http://www.bom.gov.au/climate/averages/tables/ca\_wa\_names.shtml#name\_n Accessed 17/4/2017. Bureau of Meteorology, Perth.
- Connell Wagner (2007). Contaminated Sites Desktop Study. Cited in: WAPC (2011). *Muchea Employment Node Structure Plan.* Western Australian Planning Commission, Perth.
- CSIRO (2009). Surface Water Yields in South-West Western Australia. CSIRO, Perth.
- DoE (2004). *Potentially Contaminating Activities and Land Uses.* Contaminated Sites Management Series No. 8. Department of Environmental Regulation, Perth.
- DoW (2015). *Gingin Groundwater Allocation Plan*. Water resource allocation and planning report series no. 53. Department of Water, Perth.
- Emerge Associates (2015). *Environmental Assessment and Management Strategy: Muchea Employment Node Local Structure Plan 1.* Sirona Capital Management Pty Ltd, Perth.
- EPA (2015). Draft Environmental Assessment Guideline for separation distances between industrial and sensitive land uses. Environmental Protection Authority, Perth.
- Fang X. (2000). Open Channel Flow Calculator. https://www.eng.auburn.edu/~xzf0001/Handbook/Channels.html Accessed 17/4/2017. Lamar University, USA.
- Government of Western Australia (2019). *Government Sewerage Policy.* Dept of Planning, Lands & Heritage, Perth.
- Gozzard J.R. (1982). *Muchea Sheet 2034 I and part 2134 IV, Perth Metropolitan Region.* Environmental Geology Series. Geological Survey of Western Australia, Perth.
- Institute of Engineers, Australia (1987). *Australian Rainfall and Runoff: A Guide to Flood Estimation.* Institute of Engineers, Australia, Barton, ACT.
- King P.D. and Wells M.R. (1990). *Darling Range Rural Land Capability Study.* Land Resources Series No. 3. Department of Agriculture, South Perth.

- Monash University (2014). Vegetation Guidelines for Stormwater Biofilters in the South-West of Western Australia. Monash University, Melbourne.
- Standards Australia (2012). Australian/New Zealand Standard 1547:2012 On-site Domestic Wastewater Management.
- Summers R. & Weaver D. (2008). Agricultural Nutrients: Presentation to the CSIRO Urban Drainage Workshop. CSIRO, Perth.
- Swan River Trust (2009). Swan Canning Water Quality Improvement Plan. Swan River Trust, Perth.
- WAPC (2004). *Liveable Neighbourhoods Edition 3.* Western Australian Planning Commission, Perth.
- WAPC (2006). State Planning Policy 2.9: Water Resources. WAPC, Perth.
- WAPC (2008). Better Urban Water Management. WAPC, Perth.
- WAPC (2011). *Muchea Employment Node Structure Plan.* Western Australian Planning Commission, Perth.
- WA Govt (2019). Draft Muchea Industrial Park Structure Plan. WAPC, Perth.

## **Figures**



DRAFT MUCHEA INDUSTRIAL PARK STRUCTURE PLAN

services



THE SITE AND SURROUNDINGS



Image source: Google 2018





## Beayley environmental services

Figure 3

















## LANDSCAPE MASTER PLAN



## **Appendix A**

**DWER LWMS Checklist** 

# Appendix 2 Local water management strategy checklist

| Local water management strategy item                                                                                                                       | Deliverable                                                                                                     | M | Notes                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---|--------------------------|
| Executive summary                                                                                                                                          |                                                                                                                 |   |                          |
| Summary of the development<br>design strategy, outlining how the<br>design objectives are proposed to<br>be met                                            | Table 1: Design<br>elements and<br>requirements for best<br>management practices<br>and critical control points | Ŋ | Page 8                   |
| Introduction                                                                                                                                               |                                                                                                                 |   | 1                        |
| Total water-cycle management –<br>principles and objectives<br>Planning background<br>Previous studies                                                     |                                                                                                                 | V | Section 1                |
| Proposed development                                                                                                                                       |                                                                                                                 | • |                          |
| Structure plan, zoning and land use<br>Key landscape features<br>Previous land use                                                                         | Site context plan<br>Structure plan                                                                             | ম | Figures 1-3<br>Section 2 |
| Landscape – proposed public open<br>space areas, public open space<br>credits, water source, bore(s), lake<br>details, irrigation areas (if<br>applicable) | Landscape plan                                                                                                  | Ø | Sections 3, 7            |
| Design criteria                                                                                                                                            |                                                                                                                 |   |                          |
| Agreed design objectives and<br>source of objectives                                                                                                       |                                                                                                                 | V | Section 1.5<br>Table 1.1 |
| Pre-development environment                                                                                                                                |                                                                                                                 | 1 | 1                        |
| Existing information and more<br>detailed assessments (monitoring).<br>How do the site characteristics<br>affect the design?                               |                                                                                                                 | V | Section 2                |
| Site conditions – existing<br>topography/contours, aerial photo<br>underlay, major physical features                                                       | Site condition plan                                                                                             | V | Section 2                |
| Geotechnical – topography, soils<br>including acid sulfate soils and<br>infiltration capacity, test pit locations                                          | Geotechnical plan                                                                                               | V | Section 2<br>Appendix C  |
| Environmental – areas of significant<br>flora and fauna, wetlands and<br>buffers, waterways and buffers,<br>contaminated sites                             | Environmental plan plus<br>supporting data where<br>appropriate                                                 | Ø | Section 2                |
| Surface water – topography, 100-<br>year floodways and flood fringe<br>areas, water quality of flows entering<br>and leaving (if applicable)               | Surface-water plan                                                                                              | Ø | Section 2                |
| Groundwater – topography, pre-<br>development groundwater levels<br>and water quality, test bore locations                                                 | Groundwater plan plus site investigations                                                                       | V | Section 2                |

| Local water management strategy item                                                                                                                                                                                                                                                                                                                                 | Deliverable                                               | Ŋ            | Notes                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------|------------------------|
| Water sustainability initiatives                                                                                                                                                                                                                                                                                                                                     |                                                           |              |                        |
| Water efficiency measures – private<br>and public open spaces including<br>method of enforcement                                                                                                                                                                                                                                                                     |                                                           | V            | Section 3              |
| Water supply (fit-for-purpose)<br>strategy, agreed actions and<br>implementation                                                                                                                                                                                                                                                                                     |                                                           | Ø            | Section 3              |
| Wastewater management                                                                                                                                                                                                                                                                                                                                                |                                                           | V            | Section 4              |
| Stormwater management strategy                                                                                                                                                                                                                                                                                                                                       | 1                                                         | 1            | 1                      |
| Flood protection – peak flow rates,<br>volumes and top water levels at<br>control points, 100-year flowpaths<br>and100-year detention storage<br>areas                                                                                                                                                                                                               | 100-year-event plan<br>Long section of critical<br>points | র<br>ত       | Section 5              |
| Manage serviceability – storage and<br>retention required for the critical 5-<br>year ARI storm events<br>Minor roads should be passable in<br>the 5-year ARI event                                                                                                                                                                                                  | 5-year-event plan                                         | Q            | Section 5              |
| Protect ecology – detention areas<br>for the 1-year 1-hour ARI event,<br>areas for water quality treatment<br>and types of agreed structural and<br>non-structural best management<br>practices and treatment trains<br>(including indicative locations).<br>Protection of waterways, wetlands<br>(and their buffers), remnant<br>vegetation and ecological linkages | 1-year-event plan<br>Typical cross sections               | 2            | Section 5              |
| Groundwater management strategy                                                                                                                                                                                                                                                                                                                                      |                                                           |              |                        |
| Post-development groundwater<br>levels, existing and likely final<br>surface levels, outlet controls, and<br>subsoil drain areas/exclusion zones                                                                                                                                                                                                                     | Groundwater/subsoil<br>plan                               | V            | Section 6              |
| Actions to address acid sulfate soils<br>or contamination                                                                                                                                                                                                                                                                                                            |                                                           | V            | Sections 2.2.4 and 2.9 |
| The next stage – subdivision and urba                                                                                                                                                                                                                                                                                                                                | n water management plan                                   | s            |                        |
| Content and coverage of future<br>urban water management plans to<br>be completed at subdivision. Include<br>areas where further investigations<br>are required before detailed design.                                                                                                                                                                              |                                                           | V            | Section 9              |
| Monitoring                                                                                                                                                                                                                                                                                                                                                           |                                                           |              |                        |
| Recommended future monitoring<br>plan including timing, frequency,<br>locations and parameters, together<br>with arrangements for ongoing<br>actions                                                                                                                                                                                                                 |                                                           |              | Section 8              |
| Implementation                                                                                                                                                                                                                                                                                                                                                       | Γ                                                         | T            |                        |
| Developer commitments                                                                                                                                                                                                                                                                                                                                                |                                                           | $\checkmark$ | Section 9              |
| Roles, responsibilities, funding for                                                                                                                                                                                                                                                                                                                                 |                                                           | V            | Section 9              |

| Local water management strategy item | Deliverable | M                 | Notes     |
|--------------------------------------|-------------|-------------------|-----------|
| implementation                       |             |                   |           |
| Review                               |             | $\mathbf{\nabla}$ | Section 9 |

## **Appendix B**

Soil Logs

| PROJECT NUMBER:       | J20008     |
|-----------------------|------------|
| SITE ID:              | TB1        |
| EASTING:              | 405754     |
| NORTHING:             | 6505172    |
| METHOD:               | Auger rig  |
| TOTAL DEPTH (mbgl):   | 6          |
| REFUSAL (Y/N):        | Ν          |
| DATE:                 | 13/06/2017 |
| DEPTH TO WATER (mbgl) | -          |

|           | SOIL PROFILE            | SAMPLE DATA |              |  |
|-----------|-------------------------|-------------|--------------|--|
| DEPTH (m) | SOIL DESCRIPTION        | SAMPLE ID   | INTERVAL (m) |  |
| 0.5       | Brown gravelly sand     |             |              |  |
| 1 - 1.5   | Orange gravelly loam    |             |              |  |
| 2         | Orange-brown clay-loam  |             |              |  |
| 2.5       | Orange-brown loamy clay |             |              |  |
| 3         | Red-brown loamy clay    |             |              |  |
| 3.5 - 5   | Pink clay               |             |              |  |
| 5.5 - 6   | Red clay                |             |              |  |

| PROJECT NUMBER:       | J20008     |
|-----------------------|------------|
| SITE ID:              | TB2        |
| EASTING:              | 406361     |
| NORTHING:             | 6505180    |
| METHOD:               | Auger rig  |
| TOTAL DEPTH (mbgl):   | 6          |
| REFUSAL (Y/N):        | Ν          |
| DATE:                 | 13/06/2017 |
| DEPTH TO WATER (mbgl) | -          |

|           | SOIL PROFILE                    | SAMPLE DATA |              |  |
|-----------|---------------------------------|-------------|--------------|--|
| DEPTH (m) | SOIL DESCRIPTION                | SAMPLE ID   | INTERVAL (m) |  |
| 0.5 - 2   | Orange slightly clayey sand     |             |              |  |
| 2.5       | Orange-brown gravelly loam      |             |              |  |
| 3         | Orange-brown gravelly clay-loam |             |              |  |
| 3.5 - 4   | Red-brown loamy clay            |             |              |  |
| 4.5       | Red gravelly loamy clay         |             |              |  |
| 5-Jun     | Red loamy clay                  |             |              |  |



| PROJECT NUMBER:       | J20008     |
|-----------------------|------------|
| SITE ID:              | TB3        |
| EASTING:              | 406340     |
| Northing:             | 6505764    |
| METHOD:               | Auger rig  |
| TOTAL DEPTH (mbgl):   | 2          |
| REFUSAL (Y/N):        | Y          |
| DATE:                 | 13/06/2017 |
| DEPTH TO WATER (mbgl) | -          |

|                           | SOIL PROFILE                       | SAMPLE DATA |              |  |
|---------------------------|------------------------------------|-------------|--------------|--|
| DEPTH (m)                 | SOIL DESCRIPTION                   | SAMPLE ID   | INTERVAL (m) |  |
| 0.5                       | Grey sand                          |             |              |  |
| 1                         | Grey-brown sand, damp              |             |              |  |
| 1.5                       | Brown slightly gravelly sand, damp |             |              |  |
| 2                         | Red-brown gravelly clay            |             |              |  |
| 2.4 Refusal on granite(?) |                                    |             |              |  |
|                           |                                    |             |              |  |



| PROJECT NUMBER:       | J20008     |
|-----------------------|------------|
| SITE ID:              | TB4        |
| EASTING:              | 404938     |
| NORTHING:             | 6505808    |
| METHOD:               | Auger rig  |
| TOTAL DEPTH (mbgl):   | 4          |
| REFUSAL (Y/N):        | n          |
| DATE:                 | 13/06/2017 |
| DEPTH TO WATER (mbgl) | -          |

| SOIL PROFILE |                                                | SAMPLE DATA |              |
|--------------|------------------------------------------------|-------------|--------------|
| DEPTH (m)    | SOIL DESCRIPTION                               | SAMPLE ID   | INTERVAL (m) |
| 0.5          | Grey-brown gravelly sand                       |             |              |
| 1            | Orange gravelly sand                           |             |              |
| 1.5          | Orange gravelly loamy sand                     |             |              |
| 2            | Orange loamy clay                              |             |              |
| 2.5 - 3      | Orange-brown/grey mottled well structured clay |             |              |
| 3.5          | Pink-brown hard clay, dry                      |             |              |
| 4            | Pink hard clay, dry                            |             |              |



| PROJECT NUMBER:       | J20008     |
|-----------------------|------------|
| SITE ID:              | TB5        |
| EASTING:              | 405623     |
| NORTHING:             | 6505941    |
| METHOD:               | Auger rig  |
| TOTAL DEPTH (mbgl):   | 4          |
| REFUSAL (Y/N):        | Ν          |
| DATE:                 | 13/06/2017 |
| DEPTH TO WATER (mbgl) | -          |

| SOIL PROFILE |                                   | SAMPLE DATA |              |
|--------------|-----------------------------------|-------------|--------------|
| DEPTH (m)    | SOIL DESCRIPTION                  | SAMPLE ID   | INTERVAL (m) |
| 0.5          | Brown gravelly sand               |             |              |
| 1            | Orange-brown sandy gravel         |             |              |
| 1.5          | Orange-yellow gravelly loamy sand |             |              |
| 2 - 2.5      | Orange-yellow sandy clay          |             |              |
| 3            | Orange-brown sandy clay           |             |              |
| 3.5 - 4      | Yellow-brown sandy clay           |             |              |



| PROJECT NUMBER:       | J20008     |
|-----------------------|------------|
| SITE ID:              | TB6        |
| EASTING:              | 405100     |
| NORTHING:             | 6505093    |
| METHOD:               | Auger rig  |
| TOTAL DEPTH (mbgl):   | 4          |
| REFUSAL (Y/N):        | Ν          |
| DATE:                 | 13/06/2017 |
| DEPTH TO WATER (mbgl) | -          |

| SOIL PROFILE |                                                      | SAMPLE DATA |              |
|--------------|------------------------------------------------------|-------------|--------------|
| DEPTH (m)    | SOIL DESCRIPTION                                     | SAMPLE ID   | INTERVAL (m) |
| 0.5          | Brown gravelly sand                                  |             |              |
| 1 - 1.5      | Orange-brown gravelly loam                           |             |              |
| 2            | Orange-brown gravelly loamy clay                     |             |              |
| 2.5          | Red-brown moderately structured gravelly clay        |             |              |
| 3            | Red-yellow-brown well structured gravelly clay, damp |             |              |
| 3.5          | Red-brown/grey mottled clay                          |             |              |
| 4            | Red clay, dry                                        |             |              |

| PROJECT NUMBER:       | J20008     |
|-----------------------|------------|
| SITE ID:              | TB7        |
| EASTING:              | 405596     |
| NORTHING:             | 6504222    |
| METHOD:               | Auger rig  |
| TOTAL DEPTH (mbgl):   | 4          |
| REFUSAL (Y/N):        | Ν          |
| DATE:                 | 13/06/2017 |
| DEPTH TO WATER (mbgl) | -          |

| SOIL PROFILE |                                              | SAMPLE DATA |              |
|--------------|----------------------------------------------|-------------|--------------|
| DEPTH (m)    | SOIL DESCRIPTION                             | SAMPLE ID   | INTERVAL (m) |
| 0.5          | Pale brown gravelly sand                     |             |              |
| 1            | Yellow-brown gravelly sandy loam             |             |              |
| 1.5          | Yellow-brown gravelly loamy clay             |             |              |
| 2            | Brown gravelly loamy clay                    |             |              |
| 2.5 - 3      | Red-brown slightly mottled gravelly clay     |             |              |
| 3.5 - 4      | Red/orange/grey slightly mottled gritty clay |             |              |



| PROJECT NUMBER:       | J20008     |
|-----------------------|------------|
| SITE ID:              | TB8        |
| EASTING:              | 405932     |
| NORTHING:             | 6504216    |
| METHOD:               | Auger rig  |
| TOTAL DEPTH (mbgl):   | 4          |
| REFUSAL (Y/N):        | Ν          |
| DATE:                 | 13/06/2017 |
| DEPTH TO WATER (mbgl) | _          |

| SOIL PROFILE |                                 | SAMPLE DATA |              |
|--------------|---------------------------------|-------------|--------------|
| DEPTH (m)    | SOIL DESCRIPTION                | SAMPLE ID   | INTERVAL (m) |
| 0.5 - 1      | Yellow-brown gravelly sand      |             |              |
| 1.5          | Orange-brown gravelly loam      |             |              |
| 2            | Orange-brown gravelly clay-loam |             |              |
| 2.5 - 4      | Red-brown sandy loamy clay      |             |              |
## SOIL PROFILE LOG

| PROJECT NUMBER:       | J20008     |
|-----------------------|------------|
| SITE ID:              | TB9        |
| EASTING:              | 406375     |
| NORTHING:             | 6504202    |
| METHOD:               | Auger rig  |
| TOTAL DEPTH (mbgl):   | 3          |
| REFUSAL (Y/N):        | Ν          |
| DATE:                 | 13/06/2017 |
| DEPTH TO WATER (mbgl) | -          |

|           | SAMPLE DATA                                    |           |              |
|-----------|------------------------------------------------|-----------|--------------|
| DEPTH (m) | SOIL DESCRIPTION                               | SAMPLE ID | INTERVAL (m) |
| 0.5       | Yellow-brown slightly gravelly silty sand      |           |              |
| 1 - 1.5   | Yellow-brown sandy loam with occasional gravel |           |              |
| 2         | Brown slightly gravelly clay-loam              |           |              |
| 2.5 - 3   | Red-brown silty clay, dry & very hard          |           |              |
|           |                                                |           |              |



## Appendix C

Geotechnical Report (Brown Geotechnical, 2021)

### **PRELIMINARY GEOTECHNICAL INVESTIGATION**

#### For Local Structure Plan

LOTS 50 and M1456 GREAT NORTHERN HIGHWAY MUCHEA WESTERN AUSTRALIA

> DECEMBER 2020 Ref: 20049

FOR Tallangatta Beef Pty Ltd c/- iParks Property Group Pty



#### CONDITIONS RELATING TO THIS REPORT

- This report has been prepared for the sole use of Tallangatta Beef Pty Ltd. It has been issued in accordance with the agreed terms and scope detailed in the proposal for the investigation. No responsibility or liability to any third party is accepted for any damages arising out of the use of this report.
- 2. This report has been prepared by suitably qualified and experienced personnel for the purposes stated herein. Every care is taken with the report as it relates to interpretation of sub-surface conditions, discussion of findings and recommendations given. No responsibility for the consequences of extrapolation by others is accepted by the company.
- 3. Findings and conclusions produced in the report are based on the investigation of the subsurface through isolated locations. Conditions between investigated sites are based on extrapolation, interpretation and professional estimates. Unexpected variations in ground conditions often occur which cannot always be anticipated. The conclusions and recommendations in the report were considered accurate at the time of issue and based on certain assumptions at the time. Conditions and assumptions change with time and may affect the accuracy of the report.
- 4. Certain content within this report is based on information provided by the client and/or other parties and the accuracy of this information cannot be guaranteed.
- 5. These conditions must be read as part of the report and must be reproduced with all future copies.
- 6. The recommendations of this report should be considered a starting point. Recommendations should be continuously reviewed during the earthworks stage as subsurface information and results from monitoring become available. It is strongly recommended that the Company be retained to provide consultancy and/or inspections during the earthwork stages.

#### TABLE OF CONTENTS

| 1       | Introd | oduction1  |                                                 |   |  |  |
|---------|--------|------------|-------------------------------------------------|---|--|--|
| 2       | Brief  | ief1       |                                                 |   |  |  |
| 3       | Desk   | Studies.   |                                                 | 1 |  |  |
| 4       | Field  | work and   | Laboratory Testing                              | 2 |  |  |
|         | 4.1    | Scope of   | Work                                            | 2 |  |  |
|         | 4.2    | Laborato   | ry Testing                                      | 2 |  |  |
| 5       | Geote  | echnical   | Results                                         | 2 |  |  |
|         | 5.1    | Subsurfa   | ce Condition                                    | 2 |  |  |
|         |        | 5.1.1      | Topsoil and Fill                                | 2 |  |  |
|         |        | 5.1.2      | Sand with Silt                                  | 3 |  |  |
|         |        | 5.1.3      | Sandy Gravel                                    | 3 |  |  |
|         |        | 5.1.4      | Laterite (Cemented Sandy Gravel)                | 3 |  |  |
|         |        | 5.1.5      | Gravelly Sand with Clay                         | 3 |  |  |
|         |        | 5.1.6      | Groundwater                                     | 3 |  |  |
|         | 5.2    | Laborato   | ry Test Results                                 | 4 |  |  |
|         | 5.3    | Soil Perr  | neability                                       | 4 |  |  |
| 6       | Analy  | sis and (  | Conclusions                                     | 5 |  |  |
|         | 6.1    | Subsurfa   | ce Conditions                                   | 5 |  |  |
|         | 6.2    | Groundw    | /ater                                           | 5 |  |  |
|         | 6.3    | Site Clas  | sification and Fill Requirements                | 5 |  |  |
|         | 6.4    | Earthwor   | 'ks                                             | 6 |  |  |
|         |        | 6.4.1      | Introduction                                    | 6 |  |  |
|         |        | 6.4.2      | Topsoil and Fill Management                     | 6 |  |  |
|         |        | 6.4.1      | Blending of Topsoil for use as Engineering Fill | 6 |  |  |
|         |        | 6.4.2      | Proof Rolling                                   | 7 |  |  |
|         |        | 6.4.3      | Imported Fill Material                          | 7 |  |  |
|         |        | 6.4.4      | Earthwork Inspections                           | 7 |  |  |
|         | 6.5    | Suitabilit | y of In-situ Soils as Engineering Fill          | 7 |  |  |
|         | 6.6    | Design C   | BR                                              | 7 |  |  |
|         | 6.7    | Retaining  | g Wall Parameters                               | 8 |  |  |
|         | 6.8    | Acid Sul   | phate Soils                                     | 8 |  |  |
|         | 6.9    | Site Perr  | neability and Drainage Recommendations          | 8 |  |  |
| REFEREN | ICES   |            |                                                 | 9 |  |  |

#### LIST OF TABLES

| Table 1 Laboratory Test Result |
|--------------------------------|
|--------------------------------|

- Table 2Permeability Test Results
- **Table 3**Definition of Site Classifications (Australian Standard AS2870-2011)

#### LIST OF FIGURES

Figure 1Test LocationFigure 2Subsoil Conditions and Site Classification

#### LIST OF APPENDICES

| Appendix A | Test Hole Logs |
|------------|----------------|
|------------|----------------|

- Appendix B Perth Sand Penetrometer Plots
- Appendix C Laboratory Test Certificates

#### 1 Introduction

In November 2020 Brown Geotechnical was commissioned by iParks Property Group on behalf of the client – Tallangatta Beef Pty Ltd to undertake a preliminary geotechnical investigation for the development of a Local Structure Plan at Lots 50 and M1456 Great Northern Highway, Muchea (the site), refer Figure 1. This report presents the results of the investigation conducted at the site. The fieldwork was carried out over the 19<sup>th</sup> and 20<sup>th</sup> November 2020. Details of the site were supplied by planners iParks Property Group Pty.

<u>Note</u>: It should be noted that this is a preliminary geotechnical investigation for the development of a Local Structure Plan. In portions of the site where soils are non-homogenous, or where boundaries lines are drawn on Figures, for example between zones of different soil types or site classification, additional investigation should be undertaken. The conclusions in this report are based on limited sampling and testing, and should be used as starting point for further detailed investigations as the project proceeds.

#### 2 Brief

The brief discussed with the planners required the report to address:

- Subsurface conditions.
- An estimate of existing soil classification in accordance with AS2870 (2011).
- Any earthworks required to obtain a classification suitable for development including estimated additional fill thickness requirements.
- The presents of uncontrolled fill.
- Estimated CBR for road pavement design.
- Suitability of existing soils for use in the development.
- An assessment of acid sulphate soil issues
- Estimated site permeability and likely drainage issues.

#### 3 Desk Studies

The site covers approximately 213ha and consists of large fenced paddocks. The paddocks are mostly grass covered with some areas of trees. A small creek runs east west across the north of the site. The depth varies from 0.5m to 1m.

The geological map for the area indicates the majority of the site to be underlain by the Guildford Formation consisting of clay, sand, silt and gravels. Quartz sand is noted in the centre and along the eastern boundary, with lateritic gravels towards the north eastern corner.

The Perth Groundwater Map indicates the historical maximum groundwater level to be about 50m AHD, approximately 8m below ground level. It is understood that pre-development groundwater monitoring is to be carried out on the site by others.

The acid sulphate soil risk map for the area, indicates soils to be in the No Known Risk category.

The site rises eastwards from approx. 50m along the Great Northern Highway to 93m AHD in the north east. Some steeper slopes rise in the north east, likely associated with the outcropping laterite deposits noted on the geological map.

#### 4 Fieldwork and Laboratory Testing

#### 4.1 Scope of Work

As detailed in the Brown Geotechnical proposal, the following scope of work was undertaken:

- A desk study to determine likely soil types below the site.
- Follow-up fieldwork including a walk-over survey to determine any obvious geological features, hazards and ASS indicators.
- Test holes excavated at approximate 200m centres to confirm soil type identified in the desk study. Some areas allowed limited access, however enough information was collected for the preliminary report.
- Limited soil sampling was carried out for laboratory analysis to determine soil classification and geotechnical properties.
- Laboratory testing included: particle size distribution, Atterberg Limits, percent fines content and organic content.
- In the absence of any high-risk ASS indicators, no preliminary acid sulphate soil testing was required as initially indicated in the proposal.
- Organic content determination was carried out for potential blending ratios of topsoil with clean sand fill for use in the future development.
- Permeability testing was carried out typical soil types encountered for site drainage information.

Test locations are shown on Figure 1, with test hole logs enclosed in Appendix A and penetrometer plots in Appendix B.

#### 4.2 Laboratory Testing

Soil samples were delivered to the NATA accredited Western Geotechnical Laboratory Services for geotechnical testing. The laboratory test certificates are presented in Appendix C.

#### 5 Geotechnical Results

#### 5.1 Subsurface Condition

Subsurface conditions encountered in the test holes and inferred from laboratory test results and PSP plots are described as follows:

#### 5.1.1 Topsoil and Fill

Test holes encountered topsoil consisting of grey silty sand with organics, locally with rootlets. The topsoil varied in thickness from 0.1m to 0.15m, the average across the site being 0.1m.

No uncontrolled fill was encountered in test holes and there were no obvious signs of old structures, foundations or infill areas within the paddocks.

#### 5.1.2 Sand with Silt

Fine to medium grained, sand with low to moderate silt content was encountered in all test holes below the topsoil in the central and north western portion of the site (refer Figure 2). Penetrometer tests show the material to be medium dense. The thickness varied from approximately 0.3m to 0.5m.

The sand extends to greater depths in the north eastern portion of the site, locally >2m and at one locality on the western boundary (refer Figure 2).

#### 5.1.3 Sandy Gravel

Fine to medium grained, gravel with sand was encountered in all test holes below the topsoil in the southern portion of the site (refer Figure 2). Penetrometer tests show the material to be medium dense to dense. The thickness varied from approximately 0.1m to 0.55m.

#### 5.1.4 Laterite (Cemented Sandy Gravel)

A very dense, often cemented, sandy gravel or Laterite was encountered at the surface in TH15 and TH16 on the eastern boundary. The excavator refused in the material at about 0.6m.

#### 5.1.5 Gravelly Sand with Clay

Very dense, fine to medium grained sandy gravel with clay was encountered below the silty sand and sandy gravel areas of the site. The material was occasionally present at the surface in the center of the site in the vicinity of TH7, 11 and 12. Test results show the material to have a moderate fines content, intermediate to low plasticity with a low expansive nature. The material often became hard after about 1m due to pockets of iron rich cementation resulting in slow excavation and often caused refusal of the 5 tonne excavator.

#### 5.1.6 Groundwater

No groundwater was not encountered in test holes. The Perth Groundwater Map indicates the historical maximum groundwater levels to be about 50m AHD, approximately 8m below ground level.

#### 5.2 Laboratory Test Results

Laboratory test results are summarized in Table 1

| Test        | Depth   | LL  | PL  | PI  | Particle Size Distribution |          | Organic   |     |
|-------------|---------|-----|-----|-----|----------------------------|----------|-----------|-----|
| Hole<br>No. | (m)     | (%) | (%) | (%) | Fines (%)                  | Sand (%) | Gravel(%) | (%) |
| TH01        | 0.2-0.5 | NP  | NP  | NP  | 13                         | 79       | 8         |     |
| TH06        | 1.5-2.0 | 31  | 13  | 21  | 27                         |          |           |     |
| TH14        | 0.1     |     |     |     |                            |          |           | 5.8 |
| TH14        | 1.0-1.5 | NP  | NP  | NP  | 22                         | 71       | 7         |     |
| TH19        | 0.3-0.8 |     |     |     | 4                          | 26       | 70        |     |
| TH19        | 1.0-1.5 | 28  | 14  | 14  | 19                         |          |           |     |
| TH21        | 1.5-1.9 | 35  | 16  | 19  | 24                         |          |           |     |
| TH29        | 0.1-0.5 | NP  | NP  | NP  | 5                          | 27       | 68        |     |
| TH29        | 0.5-1.1 | 23  | 17  | 6   |                            |          |           |     |
| TH37        | 1.2-1.6 | 31  | 14  | 17  | 21                         |          |           |     |

| Table 1 – | Classification | <b>Test Results</b> |
|-----------|----------------|---------------------|
|           |                |                     |

\*Non-plastic

#### 5.3 Soil Permeability

Permeability test results are summarized in Table 2.

| Table 2 – | Permeability | Test Results  |
|-----------|--------------|---------------|
|           |              | 1000110000100 |

| Test<br>Location | Testing Material In-situ Permeability<br>Test Result (m/s) |                         | Drainage<br>Characteristics |
|------------------|------------------------------------------------------------|-------------------------|-----------------------------|
| P1 (TH12)        | Very dense gravelly sand with clay                         | *1x10 <sup>-9</sup> m/s | Poor                        |
| P2 (TH01)        | Medium dense sand with silt                                | 5x10 <sup>-4</sup> m/s  | Moderate to Good            |
| P3 (TH19)        | Medium dense sandy gravel with silt                        | 6x10 <sup>-4</sup> m/s  | Moderate to Good            |

\*Estimated: Minimal Soakage

#### 6 Analysis and Conclusions

#### 6.1 Subsurface Conditions (refer Figure 2)

The topsoil has an average thickness of 0.1m. Once the grass and roots are removed the topsoil will be relatively low in organic content. Testing a typical sample gave an organic content of 5.8%. It should be suitable for use as engineering fill when screened and blended with clean sand fill at a ratio of approximately 1:3 (screened topsoil : clean sand). Further testing following screening could bring the ratio down to 1:2 or 1:1 for some portions of the site.

Below the topsoil, much of the site is covered by 0.3-0.5m of granular soils with a moderate silt content (sand and gravels). These soils are non-cohesive, relatively free draining with moderate to good drainage characteristics.

These sand and gravels are underlain by a clayey subgrade across the majority of the site, except for the north east area. The soil is a very dense gravel with clay. The clayey subgrade extends to at least 2.0m. The soils have a moderate to low plastic fines content, an intermediate to low plasticity and a low expansive nature. The drainage in the clayey soil is poor. The material often becomes hard with iron cementation below about 1m which caused refusal of the 5 tonne excavator in most holes.

The north eastern area consists of deeper sands, with hard lateritic soils on the eastern boundary which caused refusal of the 5 tonne excavator close to the surface.

No uncontrolled fill was encountered in test holes.

With respect to the desk study and geological information obtained prior to the fieldwork, it appears that the sands discussed are not as extensive as anticipated, confined only to the north east area. The remainder of the site is underlain by the Guildford Formation as suggested, with the laterite deposits to the east.

#### 6.2 Groundwater

No groundwater was not encountered in test holes. The Perth Groundwater Map indicates the historical maximum groundwater levels to be about 50m AHD, approximately 8m below ground level. It is likely that in times of heavy rainfall, the granular soils above of the clayey subgrade will saturate resulting in a perched water table. The soils would then likely drain towards the creek; or the deeper sand deposits from the raised lateritic area.

#### 6.3 Site Classification and Fill Requirements

Based on this preliminary geotechnical investigation, test hole spacing and limited testing, the classification for the site in accordance with AS 2870 – 2011 can be divided in to two classes. The portion underlain by a clayey subgrade with moderate to low plastic fines content, low plasticity and low expansive nature has an existing classification of Class 'S'. The portion underlain by deeper sand and laterite has an existing classification of Class 'A' (refer Figure 2 and Table 3).

To obtain a site classification of Class 'A' in all areas, additional sand fill will be required. A total of 1.8m of granular material will be required above the clayey subgrade. The approximate thickness of additional fill varies from 0.2m to 1.8m and is shown on Figure 2.

Further investigation will be required to determine the exact boundaries between the site classification zones for specific Lots, and the amount of sand fill required could vary.

| Class | Foundation                                                                                                                                                                                                                                                     |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| А     | Most sand and rock sites with little or no ground movement from moisture changes                                                                                                                                                                               |
| S     | Slightly reactive clay sites with only slight ground movement for moisture changes $(y_s < 20 \text{mm})$ .                                                                                                                                                    |
| М     | Moderately reactive clay or silt sites, which can experience moderate ground movement from moisture changes ( $y_s$ 20-40mm).                                                                                                                                  |
| H1    | Highly reactive clay site, which can experience moderate to high ground movement from moisture changes ( $y_s$ 40-60mm)                                                                                                                                        |
| H2    | Highly reactive clay site, which can experience high ground movement from moisture changes ( $y_s$ 60-75mm)                                                                                                                                                    |
| E     | Extremely reactive sites, which can experience extreme ground movement from moisture changes ( $y_s$ >75mm)                                                                                                                                                    |
| Р     | Sites which include: soft soils, such as soft clays or silts or loose sands; landslip;<br>mine subsidence; collapsing soils; soils subject to erosion; reactive sites subject to<br>abnormal moisture conditions or sites which cannot be classified otherwise |

ys: Characteristic Surface Movement

#### 6.4 Earthworks

#### 6.4.1 Introduction

All earthworks should be undertaken in accordance with AS3798-1996 "Guidelines on earthworks for commercial and residential developments". This section should act as a guide to likely earthwork requirements for the site, pending a detailed investigation.

#### 6.4.2 Topsoil and Fill Management

A thin layer of topsoil is present across the site. It is not suitable for foundation support and should be removed along with trees and roots then replaced with clean sand fill. The topsoil may be used in landscaping following the removal of any tree roots, unless screened and blended as described below. A geotechnical inspection will be required to confirm topsoil stripping.

#### 6.4.1 Blending of Topsoil for use as Engineering Fill

Topsoil in most areas of the site appears to be of lower quality i.e. lower in organic and fines content. An option would be to blend the screened topsoil with clean sand fill to reduce the organic and fines content to acceptable levels for use in residential or commercial development. Limited testing on non-screened topsoil, but with grass and roots removed, suggest a ratio of approximately 1:3 (screened topsoil : clean sand) to be appropriate. Further testing following screening could bring the ration down to 1:2 or 1:1 for portions of the site.

Ongoing tests for organic and fines content would be required post screening and on the blended soil to confirm suitability for use in the development.

#### 6.4.2 Proof Rolling

Following the removal of topsoil, prior to footing placement or placing any additional fill on site, the surface should be proof rolled to achieve at least 95% SMDD for residential and 98% SMDD for commercial developments.

#### 6.4.3 Imported Fill Material

Any sand fill imported to obtain site formation levels should be compacted in layers not more than 300mm thick to at least 95% SMDD for residential and 98% SMDD for commercial developments. In-situ density tests should be carried out to calibrate a PSP to specific densities of the compacted material to check fill compaction. Moisture conditioning (wetting) of the sand may to be required to optimise compaction. Imported sand should ideally contain less than 5% non-plastic fines to maintain good drainage conditions.

Following excavation for foundations, the bases of pad and strip footings should also be compacted to achieve at least 95% SMDD for residential and 98% SMDD for commercial developments.

#### 6.4.4 Earthwork Inspections

A geotechnical engineer should inspect the site following the removal of vegetation, trees, roots and unsuitable materials, and to confirm the compaction of the subsurface following proof rolling. Inspections and auditing of the earthworks should be carried out by the geotechnical engineer to enable confirmation of the final site classification.

#### 6.5 Suitability of In-situ Soils as Engineering Fill

The majority of the in-situ sands, particularly in the central and north area, contain a moderate fines content but zero plasticity. The soils will be suitable for use as engineering fill in the future development but have a reduced permeability due to the raised silt content. Blending with clean sand fill would reduce the fines content and increase drainage potential.

The sandy gravel with clay could also be blended with clean sand to reduce the fines. The material may be appropriate as a base layer above the existing clayey subgrade if major earthworks are required and removal of the existing granular soils is necessary.

#### 6.6 Design CBR

Assuming the subgrade material below the road pavement or car park areas will be the natural in-situ near surface sand, a design CBR of 20 is suitable pavement design. Pavements founded on the sandy gravels could have a higher CBR of at least 30. Pavements founded within imported sand fill will require CBR testing during earthworks.

#### 6.7 Retaining Wall Parameters

The site is gently sloping to the west and some retaining maybe required in the development. The following retaining wall parameters have been based on a compacted dense sand soil with  $\phi$ =40°.

γ=19 kN/m<sup>3</sup> Ko=0.36 Ka=0.22 Kp=4.6

The parameters detailed above assume design of the retaining structure and compaction of the foundations are in accordance with AS 4678-2002, and that backfill material is composed of clean cohesionless sand.

#### 6.8 Acid Sulphate Soils

The acid sulphate soil risk map for the area indicate soils below the site to be in the No Known Risk category. The walkover survey and descriptions from test holes indicated no soils associated with high-risk ASS.

#### 6.9 Site Permeability and Drainage Recommendations

The near surface sand and gravels contain moderate fines, zero plasticity and are free draining. The drainage condition within the sands prior to proof rolling is moderate to good. Permeability of approx.  $5x10^{-4}$ m/s was recorded. Permeability of the underlying clayey subgrade was poor.

For soakwell installation, additional sand fill may be required in some areas, especially where the clayey subgrade approaches the existing surface. A suitably designed drainage system would allow for the use of soakwells if sufficient height, say at least 1.2m, is obtained above the clayey subgrade and the groundwater. Further permeability testing and groundwater monitoring is recommended as part of the detailed geotechnical investigation to refine these observations.

If clean fill sand is to be imported on to the site to raise site formation levels, permeability can vary depending on the source, and could vary between  $1 \times 10^{-3}$  and a  $1 \times 10^{-5}$  m/s based on observed results on typical Perth fill sands.

Permeability and drainage conditions may be reduced during earthworks due to compaction of in-situ and imported sands. Over compaction during earthworks can seriously reduce soil permeability. It is recommended that further permeability testing be carried out following earthworks to confirm parameters used during drainage design.

#### **BROWN GEOTECHNICAL**

Ferry Haryono Senior Geotechnical Engineer Reviewed by Ken Brown Senior Geotechnical Engineer

#### REFERENCES

- 1. Standards Australia AS 2870 (2011). Residential Slabs and Footings Construction.
- 2. Geological Survey of Western Australia. 1:50,000 Environmental Geology Series, Perth.
- 3. Department of Water. *Perth Groundwater Map*
- 4. Standards Australia AS3798-2011. "Guidelines on earthworks for commercial and residential developments".
- 5. Standards Australia AS 4678-2002. Earth-Retaining Structures.

# **FIGURES**





# **APPENDIX** A

### SOIL CLASSIFICATION CHART

|                                                     |                                                                        |                                  | SYM   | BOLS   | TYPICAL                                                                                                                     |  |
|-----------------------------------------------------|------------------------------------------------------------------------|----------------------------------|-------|--------|-----------------------------------------------------------------------------------------------------------------------------|--|
| 1717                                                | AJUR DIVIS                                                             | 10113                            | GRAPH | LETTER | DESCRIPTIONS                                                                                                                |  |
|                                                     | GRAVEL<br>AND                                                          | CLEAN<br>GRAVELS                 |       | GW     | WELL-GRADED GRAVELS, GRAVEL -<br>SAND MIXTURES, LITTLE OR NO FINES                                                          |  |
|                                                     | GRAVELLY<br>SOILS                                                      | (LITTLE OR NO FINES)             |       | GP     | POORLY-GRADED GRAVELS, GRAVEL -<br>SAND MIXTURES, LITTLE OR NO FINES                                                        |  |
| COARSE<br>GRAINED<br>SOILS                          | MORE THAN<br>50% OF<br>COARSE                                          | GRAVELS WITH<br>FINES            |       | GM     | SILTY GRAVELS, GRAVEL - SAND - SILT<br>MIXTURES                                                                             |  |
|                                                     | FRACTION<br>RETAINED ON<br>NO. 4 SIEVE                                 | (APPRECIABLE AMOUNT<br>OF FINES) |       | GC     | CLAYEY GRAVELS, GRAVEL - SAND -<br>CLAY MIXTURES                                                                            |  |
| MORE THAN<br>50% OF                                 | SAND<br>AND                                                            | CLEAN SANDS                      |       | SW     | WELL-GRADED SANDS, GRAVELLY<br>SANDS, LITTLE OR NO FINES                                                                    |  |
| MATERIAL IS<br>LARGER THAN<br>NO. 200 SIEVE<br>SIZE | SANDY<br>SOILS                                                         | (LITTLE OR NO FINES)             |       | SP     | POORLY-GRADED SANDS, GRAVELLY<br>SAND, LITTLE OR NO FINES                                                                   |  |
|                                                     | MORE THAN<br>50% OF<br>COARSE<br>FRACTION<br>PASSING ON<br>NO. 4 SIEVE | SANDS WITH<br>FINES              |       | SM     | SILTY SANDS, SAND - SILT MIXTURES                                                                                           |  |
|                                                     |                                                                        | (APPRECIABLE AMOUNT<br>OF FINES) |       | SC     | CLAYEY SANDS, SAND - CLAY<br>MIXTURES                                                                                       |  |
|                                                     | SILTS<br>AND<br>CLAYS                                                  | LIQUID LIMIT<br>LESS THAN 50     |       | ML     | INORGANIC SILTS AND VERY FINE<br>SANDS, ROCK FLOUR, SILTY OR<br>CLAYEY FINE SANDS OR CLAYEY<br>SILTS WITH SLIGHT PLASTICITY |  |
| FINE                                                |                                                                        |                                  |       | CL     | INORGANIC CLAYS OF LOW TO<br>MEDIUM PLASTICITY, GRAVELLY<br>CLAYS, SANDY CLAYS, SILTY CLAYS,<br>LEAN CLAYS                  |  |
| GRAINED<br>SOILS                                    |                                                                        |                                  |       | OL     | ORGANIC SILTS AND ORGANIC SILTY<br>CLAYS OF LOW PLASTICITY                                                                  |  |
| MORE THAN<br>50% OF<br>MATERIAL IS<br>SMALLER       |                                                                        | LIQUID LIMIT<br>GREATER THAN 50  |       | МН     | INORGANIC SILTS, MICACEOUS OR<br>DIATOMACEOUS FINE SAND OR SILTY<br>SOILS                                                   |  |
| THAN NO. 200<br>SIEVE SIZE                          | SILTS<br>AND<br>CLAYS                                                  |                                  |       | СН     | INORGANIC CLAYS OF HIGH<br>PLASTICITY                                                                                       |  |
|                                                     |                                                                        |                                  |       | ОН     | ORGANIC CLAYS OF MEDIUM TO HIGH<br>PLASTICITY, ORGANIC SILTS                                                                |  |
| HIGHLY ORGANIC SOILS                                |                                                                        |                                  |       | PT     | PEAT, HUMUS, SWAMP SOILS WITH<br>HIGH ORGANIC CONTENTS                                                                      |  |

NOTE: DUAL SYMBOLS ARE USED TO INDICATE BORDERLINE SOIL CLASSIFICATIONS

| E                                                             | 3                             | G                             | Brown G                                       | eotech                      | nical                                                                                                                               |                                                                                                                                                   |                                                                         | BOREHO                             | DLE NUMBER TH01<br>PAGE 1 OF 1     |  |
|---------------------------------------------------------------|-------------------------------|-------------------------------|-----------------------------------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------|------------------------------------|--|
| CL                                                            |                               | Γ <u>Τ</u> α<br>CT N          | llangatta B<br>UMBER 🏾 🕫                      | eef Pty<br>20049            | <sup>z</sup> Ltd                                                                                                                    |                                                                                                                                                   | PROJECT NAME LOTS                                                       | 50 and M1456                       | 3                                  |  |
| DA<br>DR<br>EQ<br>HC                                          | TE S<br>ILLI<br>UIPI<br>DLE S | STAR<br>NG CO<br>MENT<br>SIZE | TED _20/1<br>ONTRACTO<br>_5 tonne<br>0.5mx1.5 | 0/20<br><b>DR</b><br>excava | tor                                                                                                                                 | COMPLETED         20/10/20         R.L. SURFACE           SLOPE         90°           HOLE LOCATION         405491           LOGGED BY         FH |                                                                         | 1 6504955                          | DATUM<br>BEARING<br>CHECKED BY _KB |  |
| Method                                                        | Water                         | RL<br>(m)                     | Graphic Log                                   | Classification<br>Symbol    |                                                                                                                                     | Material Descript                                                                                                                                 | ion                                                                     | Samples<br>Tests<br>Remarks        | Additional Observations            |  |
| BOREHOLE/ TEST PIT MUCHAE.GPJ GINT STD AUSTRALIA.GDT 15/12/20 | Not Encountered               |                               |                                               | SP-SM                       | TOPSOIL: Loose, dark gre<br>SAND: Loose to medium of<br>gravel, dry<br>GRAVELLY SAND with Cl<br>REFUSAL<br>Borehole TH01 terminated | ey, silty sand with roo<br>dense, fine to mediun<br>LAY: Very dense, fine                                                                         | tlets n grained, grey, with silt, trace to coarse, yellowish brown, dry | Fines=8%<br>Sand=79%<br>Gravel=13% |                                    |  |

|        | 3               | G           | Brow                  | vn Ge                    | otechr                   | nical                                    |                       | E                               | BOREHO                      | DLE NUMBER TH02<br>PAGE 1 OF 1 |
|--------|-----------------|-------------|-----------------------|--------------------------|--------------------------|------------------------------------------|-----------------------|---------------------------------|-----------------------------|--------------------------------|
| CL     |                 | Г <u>Та</u> | llangai               | tta Be                   | eef Pty                  | Ltd                                      |                       |                                 | 50 and M1456                | ð                              |
|        |                 |             |                       | κ <u>20</u><br>20/10     | )/20                     | COMPLETED 2                              | 0/10/20               | R.L. SURFACE                    |                             | DATUM                          |
| DF     |                 | NG CO       | ONTR/                 |                          | R                        |                                          |                       | SLOPE 90°                       |                             | BEARING                        |
| EC     |                 |             | <u>5 to</u>           | nne e                    | excava                   | tor                                      |                       | HOLE LOCATION 405738            | 6505809                     |                                |
|        |                 | SIZE .      | 0.5m                  | <u>x1.5n</u>             | 1                        |                                          |                       |                                 |                             |                                |
| Method | Water           | RL<br>(m)   | Depth<br>(m)          | Graphic Log              | Classification<br>Symbol |                                          | Material Description  | on                              | Samples<br>Tests<br>Remarks | Additional Observations        |
|        |                 |             |                       | <u>, 17</u><br>17 . , 17 |                          | TOPSOIL: Loose, dark grey, :             | silty sand with rootl | ets                             |                             |                                |
|        | Not Encountered |             |                       |                          | GP-GC                    | SAND: Loose to medium den<br>gravel, dry | se, fine to medium    | grained, grey, with silt, trace |                             |                                |
|        |                 |             | _<br>2 <u>.0</u><br>_ |                          |                          | REFUSAL<br>Borehole TH02 terminated at   | 1.8m                  |                                 |                             |                                |
|        |                 |             | 2.5                   |                          |                          |                                          |                       |                                 |                             |                                |

|                      | 3                             | G                             | Brov                                        | wn Ge                            | otechr                                                            | nical                                                                                                                                                                                                  | E                                                                                                              | BOREHO                                                 | DLE NUMBER TH03<br>PAGE 1 OF 1     |  |  |
|----------------------|-------------------------------|-------------------------------|---------------------------------------------|----------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------|--|--|
| CL<br>PR             |                               | Γ <u>Τ</u> α<br><b>CT N</b> I | llanga<br>JMBE                              | tta Be<br><b>R</b> _2(           | eef Pty<br>0049                                                   | Ltd                                                                                                                                                                                                    | PROJECT NAME LOTS                                                                                              | PROJECT NAME LOTS 50 and M1456 PROJECT LOCATION MUCHEA |                                    |  |  |
| DA<br>DR<br>EQ<br>HC | TE S<br>ILLI<br>UIPI<br>DLE S | STAR<br>NG CO<br>MENT<br>SIZE | <b>ED</b> _<br><b>DNTR</b><br>_5 to<br>0.5m | 20/10<br>ACTO<br>onne e<br>x1.5m | 0/20<br>רא<br>א ביצג<br>א ביצר ביצר ביצר ביצר ביצר ביצר ביצר ביצר | completed 20/10/20                                                                                                                                                                                     | R.L. SURFACE           SLOPE         90°           HOLE LOCATION         405992           LOGGED BY         FH | 6505834                                                | DATUM<br>BEARING<br>CHECKED BY _KB |  |  |
| Method               | Water                         | RL<br>(m)                     | Depth<br>(m)                                | Graphic Log                      | Classification<br>Symbol                                          | Material Descript                                                                                                                                                                                      | ion                                                                                                            | Samples<br>Tests<br>Remarks                            | Additional Observations            |  |  |
|                      | Not Encountered A             |                               |                                             |                                  | GP-GC                                                             | TOPSOIL: Loose, dark grey, silty sand with roo<br>SAND: Loose to medium dense, fine to medium<br>gravel, dry<br>GRAVELLY SAND with CLAY: Very dense, fine<br>REFUSAL<br>Borehole TH03 terminated at 1m | tlets  a grained, grey, with silt, trace  to coarse, yellowish brown, dry                                      |                                                        |                                    |  |  |

| E                  | 3               | G            | Brown                   | Geotech                                 | nnical                                                  | E                                                           | BOREHO                                                 | DLE NUMBER TH04<br>PAGE 1 OF 1 |  |  |
|--------------------|-----------------|--------------|-------------------------|-----------------------------------------|---------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------|--------------------------------|--|--|
| CL                 |                 | TA           | ı<br>Ilangatta<br>UMBER | <u>a Beef Pty</u><br>_20049             | y Ltd                                                   | PROJECT NAME LOTS                                           | PROJECT NAME LOTS 50 and M1456 PROJECT LOCATION MUCHEA |                                |  |  |
| DA<br>DR           |                 | STAR<br>NG C | TED _20                 | )/10/20                                 | <b>COMPLETED</b> _20/10/20                              | R.L. SURFACE<br>SLOPE _90°                                  |                                                        | DATUM                          |  |  |
| EG<br>HC<br>NC     | OLE S           | MENT<br>SIZE | <u>5 tonr</u><br>0.5mx1 | ne excava<br>.5m                        | ator                                                    | HOLE LOCATION         406198           LOGGED BY         FH |                                                        | CHECKED BY KB                  |  |  |
| Method             | Water           | RL<br>(m)    | Depth<br>(m)            | Graphic Log<br>Classification<br>Symbol | Material De                                             | scription                                                   | Samples<br>Tests<br>Remarks                            | Additional Observations        |  |  |
|                    |                 |              |                         | <u>1, 1,</u>                            | TOPSOIL: Loose, dark grey, silty sand wi                | th rootlets                                                 |                                                        |                                |  |  |
|                    |                 |              |                         | SP-SM                                   | A SAND: Loose to medium dense, fine to m<br>gravel, dry | edium grained, grey, with silt, trace                       |                                                        |                                |  |  |
|                    |                 |              | 0.5                     | GP-GC                                   | C GRAVELLY SAND with CLAY: Very dens                    | e, fine to coarse, yellowish brown, dry                     |                                                        |                                |  |  |
|                    | Not Encountered |              |                         |                                         |                                                         |                                                             |                                                        |                                |  |  |
|                    |                 |              |                         |                                         |                                                         |                                                             |                                                        |                                |  |  |
|                    |                 |              |                         |                                         |                                                         |                                                             |                                                        |                                |  |  |
| 15/12/20           |                 |              | 1 <u>.5</u>             |                                         | REFUSAL<br>Borehole TH04 terminated at 1.6m             |                                                             |                                                        |                                |  |  |
| D AUSTRALIA.GD I   |                 |              |                         |                                         |                                                         |                                                             |                                                        |                                |  |  |
| CHAE.GPJ GIN I SIL |                 |              | 2 <u>.0</u>             |                                         |                                                         |                                                             |                                                        |                                |  |  |
| OLE / TEST PIT MUC |                 |              |                         |                                         |                                                         |                                                             |                                                        |                                |  |  |
| BOREH              |                 |              | 2.5                     |                                         |                                                         |                                                             |                                                        |                                |  |  |

| E                                                            | 3                                                                                                                      | G                    | Brown Ge           | eotechi                  | nical                                                                                             |                                                                | BOREHOLE NUMBER TH05 PAGE 1 OF 1 PROJECT NAME LOTS 50 and M1456 |          |                                    |                         |
|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------|--------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------|----------|------------------------------------|-------------------------|
| CL                                                           |                                                                                                                        | Г <u>Та</u><br>СТ NI | Ilangatta Be       | eef Pty                  | Ltd                                                                                               |                                                                | PROJECT NAME LOTS 50 and M1456 PROJECT LOCATION MUCHEA          |          |                                    |                         |
| DA<br>DR<br>EG<br>HC                                         | DATE STARTED _20/10/20 COMPLET<br>DRILLING CONTRACTOR<br>EQUIPMENT _5 tonne excavator<br>HOLE SIZE _0.5mx1.5m<br>HOTES |                      |                    | tor                      | /10/20                                                                                            | R.L. SURFACE<br>SLOPE _90°<br>HOLE LOCATION _<br>LOGGED BY _FH | 406306                                                          | 6505635  | DATUM<br>BEARING<br>CHECKED BY _KB |                         |
| Method                                                       | Water                                                                                                                  | RL<br>(m)            | (m)<br>Graphic Log | Classification<br>Symbol | Ν                                                                                                 | Material Descriptic                                            | 'n                                                              |          | Samples<br>Tests<br>Remarks        | Additional Observations |
| BOREHOLE/ TEST PIT MUCHAE.GPJ GNT STD AUSTRALIA.GDT 15/12/20 | Not Encountered                                                                                                        |                      |                    | SP-SM                    | TOPSOIL: Loose, dark grey, sil<br>SAND: Medium dense, fine to r<br>Borehole TH05 terminated at 20 | medium grained, g                                              | grey, with silt, trace grav                                     | rel, dry |                                    |                         |

| В                              | G                             | Brov                           | wn Ge                               | otechr                                                         | nical                                                                                                                           | E                                                                   | BOREH                                                  | DLE NUMBER TH06<br>PAGE 1 OF 1     |  |  |
|--------------------------------|-------------------------------|--------------------------------|-------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------|------------------------------------|--|--|
| CLIEN                          | T _⊺a<br>ECT N                | _<br>allanga<br>UMBE           | <u>tta Be</u><br><b>R</b> _2(       | eef Pty<br>0049                                                | Ltd                                                                                                                             | PROJECT NAMES                                                       | PROJECT NAME LOTS 50 and M1456 PROJECT LOCATION MUCHEA |                                    |  |  |
| DATE<br>DRILL<br>EQUIF<br>HOLE | STAR<br>ING C<br>MENT<br>SIZE | TED _<br>ONTR<br>5 to<br>_0.5m | 20/10<br>ACTO<br>onne e<br>x1.5m    | <u>20</u><br>ראש ביישר אין | COMPLETED _20/10/20                                                                                                             | R.L. SURFACE SLOPE _90°     HOLE LOCATION _406306     LOGGED BY _FH | 6505635                                                | DATUM<br>BEARING<br>CHECKED BY _KB |  |  |
| NOTE                           | s                             |                                |                                     |                                                                |                                                                                                                                 |                                                                     |                                                        |                                    |  |  |
| Method<br>Water                | RL<br>(m)                     | Depth<br>(m)                   | Graphic Log                         | Classification<br>Symbol                                       | Material Descr                                                                                                                  | ption                                                               | Samples<br>Tests<br>Remarks                            | Additional Observations            |  |  |
|                                |                               |                                | <u>x1 /y x</u><br>1/ . <u>x1 /y</u> |                                                                | TOPSOIL: Loose, dark grey, silty sand with re                                                                                   | potlets                                                             |                                                        |                                    |  |  |
| Not Encountered                |                               |                                |                                     | SP-SM                                                          | SAND: Loose to medium dense, fine to medi<br>gravel, dry GRAVELLY SAND with CLAY: Very dense, fi Borehole TH06 terminated at 2m | um grained, grey, with silt, trace                                  | LL=34<br>PL=13<br>Fines=27%<br>LS=6%                   |                                    |  |  |
|                                |                               | 2.5                            |                                     |                                                                |                                                                                                                                 |                                                                     |                                                        |                                    |  |  |

| E              | 3                          | G         | Brown Ge                | eotechi                  | nical                                         | В                                  | BOREHO                      | DLE NUMBER TH07<br>PAGE 1 OF 1 |  |
|----------------|----------------------------|-----------|-------------------------|--------------------------|-----------------------------------------------|------------------------------------|-----------------------------|--------------------------------|--|
| C∟             | IEN                        | T Ta      | l<br><u>Ilangatta B</u> | eef Pty                  | Ltd                                           | PROJECT NAME                       | 50 and M145                 | 6                              |  |
| PR             | OJE                        |           | JMBER _2                | 0049                     |                                               | PROJECT LOCATION MUCHEA            |                             |                                |  |
| DA             | TE S                       | STAR      | <b>FED</b> <u>20/1</u>  | 0/20                     | <b>COMPLETED</b> 20/10/20                     | R.L. SURFACE                       |                             | DATUM                          |  |
| DR             | ILLI                       | NG CO     | ONTRACTO                | DR                       |                                               |                                    |                             | BEARING                        |  |
| EC             | QUIPMENT 5 tonne excavator |           |                         | tor                      | HOLE LOCATION 405567 650555                   |                                    |                             |                                |  |
| HC             | DLES                       | SIZE      | 0.5mx1.5r               | n                        |                                               | LOGGED BY FH                       |                             | CHECKED BY KB                  |  |
| NC             | DTES                       | \$        |                         |                          |                                               |                                    |                             |                                |  |
| Method         | Water                      | RL<br>(m) | (m)<br>Graphic Log      | Classification<br>Symbol | Material Descri                               | ption                              | Samples<br>Tests<br>Remarks | Additional Observations        |  |
|                |                            |           |                         | :<br>:                   | TOPSOIL: Loose, dark grey, silty sand with ro | otlets                             |                             |                                |  |
|                | 8                          |           |                         | GP-GC                    | GRAVELLY SAND with CLAY: Very dense, fir      | ne to coarse, yellowish brown, dry |                             |                                |  |
|                | Not Encounte               |           |                         |                          | REFUSAL                                       |                                    |                             |                                |  |
|                |                            |           | _                       |                          | Borehole TH07 terminated at 0.5m              |                                    |                             |                                |  |
|                |                            |           | _                       |                          |                                               |                                    |                             |                                |  |
|                |                            |           | -<br>1 <u>.0</u>        |                          |                                               |                                    |                             |                                |  |
|                |                            |           |                         |                          |                                               |                                    |                             |                                |  |
|                |                            |           | _                       |                          |                                               |                                    |                             |                                |  |
|                |                            |           | -<br>1 <u>.5</u>        |                          |                                               |                                    |                             |                                |  |
| A.GDT 15/12/20 |                            |           | _                       |                          |                                               |                                    |                             |                                |  |
| TD AUSTRALI    |                            |           |                         |                          |                                               |                                    |                             |                                |  |
| E.GPJ GINT S   |                            |           | 2 <u>.0</u>             |                          |                                               |                                    |                             |                                |  |
| EST PIT MUCHA  |                            |           |                         |                          |                                               |                                    |                             |                                |  |
| BOREHOLE / T   |                            |           | 2.5                     |                          |                                               |                                    |                             |                                |  |

| E        | 3           | G                             | Brov                                                                               | wn Ge                   | eotechr                  | nical                                           | B                                                           | OREH                        | DLE NUMBER TH08<br>PAGE 1 OF 1 |  |
|----------|-------------|-------------------------------|------------------------------------------------------------------------------------|-------------------------|--------------------------|-------------------------------------------------|-------------------------------------------------------------|-----------------------------|--------------------------------|--|
| CL<br>PR | IENT<br>OJE | Γ <u>Τ</u> α<br><b>CT N</b> I | llanga<br>JMBE                                                                     | itta Be<br><b>R</b> _2( | eef Pty<br>0049          | Ltd                                             | PROJECT NAME _LOTS 50 and M1456<br>PROJECT LOCATION _MUCHEA |                             |                                |  |
| DA<br>DR | TE S        |                               | TED _<br>ONTR                                                                      | 20/10<br>ACTO           | )/20<br>R                | COMPLETED _20/10/20                             | R.L. SURFACE<br>SLOPE _90°                                  | 6505641                     | DATUM<br>BEARING               |  |
| HO       | HOLE SIZE   |                               |                                                                                    |                         | n<br>1                   |                                                 | LOGGED BY FH                                                | 0505041                     | CHECKED BY KB                  |  |
| Method   | Mater       | RL<br>(m)                     | Depth<br>(m)                                                                       | Graphic Log             | Classification<br>Symbol | Material Descripti                              | n                                                           | Samples<br>Tests<br>Remarks | Additional Observations        |  |
|          |             |                               | _                                                                                  | <u>x1 1/2 x 1/</u>      |                          | TOPSOIL: Loose, dark grey, silty sand with root | lets                                                        |                             |                                |  |
|          | incountered |                               | _<br>_<br>0 <u>.5</u>                                                              |                         | GM                       | GRAVELLY SAND:Medium dense, fine to mediu       | ım grained, grey, with silt, dry                            |                             |                                |  |
|          | Not E       |                               |                                                                                    |                         | GP-GC                    | GRAVELLY SAND with CLAY: Very dense, fine       | to coarse, yellowish brown, dry                             |                             |                                |  |
|          |             |                               | <u>1.0</u><br>-<br>-<br>1 <u>.5</u><br>-<br>2 <u>.0</u><br>-<br>-<br>-<br>-<br>2.5 |                         |                          | REFUSAL<br>Borehole TH08 terminated at 1m       |                                                             |                             |                                |  |

|                | 3                    | G                             | Brown (              | Geotech                  | nical                                                                                                                                                 |                  | B                                                                               | OREHO                       | LE NUMBER TH09<br>PAGE 1 OF 1 |  |
|----------------|----------------------|-------------------------------|----------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------------------------------------------------------------|-----------------------------|-------------------------------|--|
| CL<br>PR       |                      | Γ <u>Τ</u> α<br><b>CT Ν</b> Ι | llangatta<br>JMBER _ | Beef Pty<br>20049        | Ltd                                                                                                                                                   |                  | PROJECT NAME LOTS 50 and M1456 PROJECT LOCATION MUCHEA                          |                             |                               |  |
| DA<br>DR<br>EC | TE S<br>ILLI<br>UIPI | STAR<br>NG CO                 | TED _20/<br>ONTRACI  | 10/20<br>OR<br>e excava  | tor                                                                                                                                                   | )/20             | R.L. SURFACE           SLOPE         90°           HOLE LOCATION         404995 | C<br>E<br>6505634           | DATUM                         |  |
| HC             | DLE S                | SIZE                          | 0.5mx1.              | ōm                       |                                                                                                                                                       |                  | LOGGED BY FH                                                                    | (                           | CHECKED BY KB                 |  |
| Method         | Water                | RL<br>(m)                     | Depth<br>(m) Depth   | Classification<br>Symbol | Mate                                                                                                                                                  | erial Descriptic | n                                                                               | Samples<br>Tests<br>Remarks | Additional Observations       |  |
|                | Not Encountered      |                               |                      | SP-SM                    | TOPSOIL: Loose, dark grey, silty s<br>SAND: Loose to medium dense, fi<br>gravel, dry<br>GRAVELLY SAND with CLAY: Ve<br>Borehole TH09 terminated at 2m | ry dense, fine   | ets<br>grained, grey, with silt, trace                                          |                             |                               |  |

| E      | 3(      | G         | Brov         | wn Ge                    | eotechr                  | nical                                                      | B                               | BOREHC                      | DLE NUMBER TH10<br>PAGE 1 OF 1 |
|--------|---------|-----------|--------------|--------------------------|--------------------------|------------------------------------------------------------|---------------------------------|-----------------------------|--------------------------------|
| CL     | IENT    | Ta        | llanga       | itta Be                  | eef Pty                  | Ltd                                                        | PROJECT NAME LOTS 5             | 50 and M1456                | ;                              |
| PR     | OJE     | CT NI     | JMBE         | <b>R</b> _2              | 0049                     |                                                            | PROJECT LOCATION _MUCHEA        |                             |                                |
| DA     | TE S    | STAR      |              | 20/10                    | )/20                     | <b>COMPLETED</b> <u>20/10/20</u>                           |                                 |                             |                                |
| EQ     |         |           | JNIR<br>5 to | ACTO                     | excava                   | tor                                                        | HOLE LOCATION 405083            | 6505388                     | BEARING                        |
| но     | LE S    | SIZE      | 0.5m         | x1.5n                    | n                        |                                                            | LOGGED BY FH                    |                             | CHECKED BY KB                  |
| NC     | TES     |           |              |                          | 1                        | 1                                                          |                                 |                             |                                |
| Method | Water   | RL<br>(m) | Depth<br>(m) | Graphic Log              | Classification<br>Symbol | Material Descriptio                                        | n                               | Samples<br>Tests<br>Remarks | Additional Observations        |
|        |         |           |              | <u>x 1, x</u><br>1, x 1, |                          | TOPSOIL: Loose, dark grey, silty sand with root            | ets                             |                             |                                |
|        |         |           | _            |                          | SP-SM                    | SAND: Loose to medium dense, fine to medium<br>gravel, dry | grained, grey, with silt, trace |                             |                                |
|        |         |           | -            |                          | -                        |                                                            |                                 |                             |                                |
|        | p       |           | _            |                          |                          |                                                            |                                 |                             |                                |
|        | ountere |           | _            |                          |                          |                                                            |                                 |                             |                                |
|        | ot Enco |           | 0.5          |                          |                          |                                                            |                                 |                             |                                |
|        | Nc      |           | 0.0          | 0                        | GP-GC                    | GRAVELLY SAND with CLAY: Very dense, fine                  | to coarse, yellowish brown, dry |                             |                                |
|        |         |           | _            |                          |                          |                                                            |                                 |                             |                                |
|        |         |           | _            |                          |                          |                                                            |                                 |                             |                                |
|        |         |           | _            |                          |                          |                                                            |                                 |                             |                                |
|        |         |           |              |                          |                          |                                                            |                                 |                             |                                |
|        |         |           | 10           |                          |                          | REFUSAL<br>Borehole TH10 terminated at 0.9m                |                                 |                             |                                |
|        |         |           | 1.0          |                          |                          |                                                            |                                 |                             |                                |
|        |         |           | -            |                          |                          |                                                            |                                 |                             |                                |
|        |         |           | _            |                          |                          |                                                            |                                 |                             |                                |
|        |         |           | _            |                          |                          |                                                            |                                 |                             |                                |
|        |         |           | _            |                          |                          |                                                            |                                 |                             |                                |
|        |         |           | 15           |                          |                          |                                                            |                                 |                             |                                |
|        |         |           |              |                          |                          |                                                            |                                 |                             |                                |
|        |         |           | -            |                          |                          |                                                            |                                 |                             |                                |
|        |         |           | -            |                          |                          |                                                            |                                 |                             |                                |
|        |         |           | _            |                          |                          |                                                            |                                 |                             |                                |
|        |         |           | _            |                          |                          |                                                            |                                 |                             |                                |
|        |         |           | 20           |                          |                          |                                                            |                                 |                             |                                |
|        |         |           | 2.0          |                          |                          |                                                            |                                 |                             |                                |
|        |         |           | -            |                          |                          |                                                            |                                 |                             |                                |
|        |         |           | -            |                          |                          |                                                            |                                 |                             |                                |
|        |         |           |              |                          |                          |                                                            |                                 |                             |                                |
|        |         |           |              |                          |                          |                                                            |                                 |                             |                                |
|        |         |           | ר <u>-</u>   |                          |                          |                                                            |                                 |                             |                                |
|        |         |           | 2.5          |                          |                          | l                                                          |                                 |                             | I                              |

| E                  | 3                   | G                    | Brown G                                        | eotech                   | nical                                       |                                                        | BOREH                       | DLE NUMBER TH11<br>PAGE 1 OF 1 |  |
|--------------------|---------------------|----------------------|------------------------------------------------|--------------------------|---------------------------------------------|--------------------------------------------------------|-----------------------------|--------------------------------|--|
| CI                 | LIEN<br>Roje        | T <u>Ta</u><br>ECT N | )<br>Illangatta B<br>UMBER _2                  | eef Pty<br>20049         | ' Ltd                                       | PROJECT NAME LOTS 50 and M1456 PROJECT LOCATION MUCHEA |                             |                                |  |
| D/<br>DF           | ATE :<br>RILLI      | STAR<br>ING C        | TED _20/1<br>ONTRACT(                          | 0/20<br>DR               | <b>COMPLETED</b> <u>20/10/20</u>            | R.L. SURFACE<br>SLOPE _90°                             |                             | DATUM<br>BEARING               |  |
| EC<br>HC<br>NC     | QUIP<br>OLE<br>OTES | MENT<br>SIZE<br>S    | <u>5 tonne</u><br>0.5mx1.5                     | excava<br>m              | tor                                         | HOLE LOCATION<br>LOGGED BY _FH                         | 47 6505378                  | CHECKED BY KB                  |  |
| Method             | Water               | RL<br>(m)            | (m)<br>Graphic Log                             | Classification<br>Symbol | Material Desc                               | ription                                                | Samples<br>Tests<br>Remarks | Additional Observations        |  |
|                    |                     |                      | <u>17 - 77 - 77 - 77 - 77 - 77 - 77 - 77 -</u> |                          | TOPSOIL: Loose, dark grey, silty sand with  | rootlets                                               |                             |                                |  |
|                    | Not Encountered     |                      |                                                | GP-GC                    | GRAVELLY SAND with CLAY: Very dense,        | fine to coarse, yellowish brown, dry                   |                             |                                |  |
|                    |                     |                      | -                                              |                          | REFUSAL<br>Borehole TH11 terminated at 0.6m |                                                        |                             |                                |  |
|                    |                     |                      | -<br>1 <u>.0</u>                               |                          |                                             |                                                        |                             |                                |  |
|                    |                     |                      |                                                |                          |                                             |                                                        |                             |                                |  |
|                    |                     |                      | _<br>1 <u>.5</u>                               |                          |                                             |                                                        |                             |                                |  |
| 24LIA.GDT 15/12/20 |                     |                      | -                                              |                          |                                             |                                                        |                             |                                |  |
| U GINT STD AUSTR   |                     |                      | _<br>2.0                                       |                          |                                             |                                                        |                             |                                |  |
| ST PIT MUCHAE.GP   |                     |                      |                                                |                          |                                             |                                                        |                             |                                |  |
| BOREHOLE / TES     |                     |                      | 2.5                                            |                          |                                             |                                                        |                             |                                |  |

| E            | 3                          | G         | Brown Ge         | eotechi                  | nical                                         | В                                  | OREHO                       | DLE NUMBER TH12<br>PAGE 1 OF 1 |  |  |
|--------------|----------------------------|-----------|------------------|--------------------------|-----------------------------------------------|------------------------------------|-----------------------------|--------------------------------|--|--|
| CL           | IEN                        | T Ta      | ]<br>Ilangatta B | eef Pty                  | / Ltd                                         | PROJECT NAME LOTS 50 and M1456     |                             |                                |  |  |
| PR           | OJE                        |           | UMBER _2         | 0049                     |                                               | PROJECT LOCATION MUCHEA            |                             |                                |  |  |
| DA           | TE S                       | STAR      | TED _ 20/10      | 0/20                     | <b>COMPLETED</b> _20/10/20                    | R.L. SURFACE                       |                             | DATUM                          |  |  |
| DR           | RILLI                      | ING C     | ONTRACTO         | DR                       |                                               | <b>SLOPE</b> <u>90°</u>            |                             | BEARING                        |  |  |
| EC           | QUIPMENT 5 tonne excavator |           |                  | tor                      | HOLE LOCATION 405709 65053                    |                                    |                             |                                |  |  |
| НС           | DLE SIZE 0.5mx1.5m         |           | LOGGED BY FH     |                          | CHECKED BY KB                                 |                                    |                             |                                |  |  |
| NC           | DTES                       | S         |                  |                          |                                               |                                    |                             |                                |  |  |
| Method       | Water                      | RL<br>(m) | Graphic Log      | Classification<br>Symbol | Material Descri                               | otion                              | Samples<br>Tests<br>Remarks | Additional Observations        |  |  |
|              |                            |           |                  | <u>.</u>                 | TOPSOIL: Loose, dark grey, silty sand with ro | otlets                             |                             |                                |  |  |
|              | pa                         |           |                  | GP-GC                    | GRAVELLY SAND with CLAY: Very dense, fir      | ne to coarse, yellowish brown, dry |                             |                                |  |  |
|              | Not Encounter              |           |                  |                          | REFUSAL                                       |                                    |                             |                                |  |  |
|              |                            |           | _                |                          | Borehole TH12 terminated at 0.5m              |                                    |                             |                                |  |  |
|              |                            |           | _                |                          |                                               |                                    |                             |                                |  |  |
|              |                            |           | -<br>1 <u>.0</u> |                          |                                               |                                    |                             |                                |  |  |
|              |                            |           | _                |                          |                                               |                                    |                             |                                |  |  |
|              |                            |           |                  |                          |                                               |                                    |                             |                                |  |  |
|              |                            |           | _<br>1 <u>.5</u> |                          |                                               |                                    |                             |                                |  |  |
| 15/12/20     |                            |           | _                |                          |                                               |                                    |                             |                                |  |  |
| STRALIA.GDT  |                            |           |                  |                          |                                               |                                    |                             |                                |  |  |
| SINT STD AU  |                            |           | 2.0              |                          |                                               |                                    |                             |                                |  |  |
| ICHAE.GPJ (  |                            |           |                  |                          |                                               |                                    |                             |                                |  |  |
| /TEST PII MU |                            |           |                  |                          |                                               |                                    |                             |                                |  |  |
| BOREHOLE     |                            |           | 2.5              |                          |                                               |                                    |                             |                                |  |  |

| BG Brown Geotechnical BOREHOLE NUMBER T |                 |                      |                                                                                                                                                    |                                  |                          |                                                                                                                                                                    |                                                        |                             | DLE NUMBER TH13<br>PAGE 1 OF 1 |  |
|-----------------------------------------|-----------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------|--------------------------------|--|
|                                         |                 | . <u>Та</u><br>СТ NI | l<br>Ilanga<br>JMBE                                                                                                                                | <u>itta Be</u><br><b>R</b> 20    | eef Pty<br>0049          | Ltd                                                                                                                                                                | PROJECT NAME LOTS 50 and M1456 PROJECT LOCATION MUCHEA |                             |                                |  |
| DA<br>DR<br>EC                          | TE S            | STAR                 | <b>ED</b> _<br><b>DNTR</b>                                                                                                                         | 20/10<br>ACTO                    | 0/20<br>R<br>excava      | completed 20/10/20                                                                                                                                                 | R.L. SURFACE                                           | 6505635                     | DATUM                          |  |
| NC                                      | DTES            |                      | 0.511                                                                                                                                              | <u>x 1.01</u>                    | 1                        |                                                                                                                                                                    |                                                        |                             |                                |  |
| Method                                  | Water           | RL<br>(m)            | Depth<br>(m)                                                                                                                                       | Graphic Log                      | Classification<br>Symbol | Material Descripti                                                                                                                                                 | ion                                                    | Samples<br>Tests<br>Remarks | Additional Observations        |  |
|                                         |                 |                      |                                                                                                                                                    | <u>x174 x</u><br>1 <u>7 x 17</u> |                          | TOPSOIL: Loose, dark grey, silty sand with root                                                                                                                    | ilets                                                  |                             |                                |  |
|                                         | Not Encountered |                      | -<br>-<br>-<br>0. <u>5</u><br>-<br>-<br>1. <u>0</u><br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                                  | GP-GC                    | SAND: Loose to medium dense, fine to medium<br>grey, with silt, trace gravel, dry<br>GRAVELLY SAND with CLAY: Very dense, fine<br>Borehole TH13 terminated at 1.1m | grained, yellowish brown &                             |                             |                                |  |
|                                         |                 |                      | 2.5                                                                                                                                                |                                  |                          |                                                                                                                                                                    |                                                        |                             |                                |  |

|          | 3               | G           | Brown Ge                            | otechr                   | nical                                                                                         | BOREHOLE NUMBER TH14<br>PAGE 1 OF 1           |                                     |                         |  |
|----------|-----------------|-------------|-------------------------------------|--------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------|-------------------------|--|
| C        |                 | T <u>Ta</u> | llangatta Be                        | ef Pty                   | Ltd                                                                                           | PROJECT NAME LOTS                             | 50 and M1456                        | 3                       |  |
| PI<br>D/ | ROJI<br>ATE     | ECT N       | UMBER <u>20</u><br>TED <u>20/10</u> | )049<br>/20              | <b>COMPLETED</b> _20/10/20                                                                    | _ PROJECT LOCATION <u>M</u><br>_ R.L. SURFACE | DATUM<br>BEARING                    |                         |  |
| D        | RILL            | ING C       | ONTRACTO                            | R                        |                                                                                               | _ <b>SLOPE</b> _90°                           |                                     |                         |  |
|          | QUIF            |             | <u>5 tonne e</u>                    | xcava                    | tor                                                                                           |                                               | 6505424                             |                         |  |
| N        |                 | SIZE .      | 0.5111X 1.511                       | 1                        |                                                                                               |                                               |                                     |                         |  |
| Method   | Water           | RL<br>(m)   | (ш)<br>httad<br>Graphic Log         | Classification<br>Symbol | Material Descript                                                                             | ion                                           | Samples<br>Tests<br>Remarks         | Additional Observations |  |
|          |                 |             | <u>1, 1, 1, 1</u>                   |                          | TOPSOIL: Loose, dark grey, silty sand with roo                                                | tlets                                         |                                     |                         |  |
|          | Not Encountered |             |                                     | SP-SM                    | SAND: Medium dense, fine to medium grained,<br>and gravel, dry Borehole TH14 terminated at 2m | yellowish brown & grey, with silt             | Fines=22%<br>Sand= 71%<br>Gravel=7% |                         |  |

| E        | 3(              | G                             | Brov                  | wn Ge            | eotechi                  | nical                                         | E                                                      | BOREHOLE NUMBER TH15<br>PAGE 1 OF 1 |                         |  |  |
|----------|-----------------|-------------------------------|-----------------------|------------------|--------------------------|-----------------------------------------------|--------------------------------------------------------|-------------------------------------|-------------------------|--|--|
| CL<br>PR | IENT<br>OJE     | Γ <u>Τ</u> α<br><b>CT N</b> I | llanga<br>JMBE        | atta Be<br>R _20 | eef Pty<br>0049          | Ltd                                           | PROJECT NAME LOTS 50 and M1456 PROJECT LOCATION MUCHEA |                                     |                         |  |  |
| DA<br>DR | TE S            | STAR                          | ied _<br>Ontr         | 20/10<br>ACTO    | )/20<br>R                | <b>COMPLETED</b> <u>20/10/20</u>              | R.L. SURFACE                                           |                                     | DATUM<br>BEARING        |  |  |
| EQ<br>HC | UIPI            | MENT<br>SIZE                  | <u>5 to</u><br>0.5m   | onne e<br>ix1.5n | excava                   | tor                                           | HOLE LOCATION                                          | 6505444                             | CHECKED BY KB           |  |  |
| Method   | Water           | RL<br>(m)                     | Depth<br>(m)          | Graphic Log      | Classification<br>Symbol | Material Descri                               | ption                                                  | Samples<br>Tests<br>Remarks         | Additional Observations |  |  |
|          |                 |                               |                       | <u></u>          |                          | TOPSOIL: Loose, dark grey, silty sand with ro | potlets                                                |                                     |                         |  |  |
|          | Not Encountered |                               | _<br>_<br>0 <u>.5</u> | F.F.F.           | GPS                      | GRAVELLY SAND / LATERITE: Very dense<br>dry   | (cemented), fine to coarse, brown,                     |                                     |                         |  |  |
|          |                 |                               | -                     |                  |                          | Borehole TH15 terminated at 0.6m              |                                                        |                                     |                         |  |  |
|          |                 |                               | 1 <u>.0</u><br>_      |                  |                          |                                               |                                                        |                                     |                         |  |  |
|          |                 |                               | -<br>1 <u>.5</u>      |                  |                          |                                               |                                                        |                                     |                         |  |  |
|          |                 |                               | -                     |                  |                          |                                               |                                                        |                                     |                         |  |  |
|          |                 |                               | 2 <u>.0</u><br>_      |                  |                          |                                               |                                                        |                                     |                         |  |  |
|          |                 |                               | 2.5                   |                  |                          |                                               |                                                        |                                     |                         |  |  |

| BOREHOLE NUMBER TH1 PAGE 1 OF |                 |             |                                                                                                                                |                        |                          |                                                 |                                 |                             |                         |  |
|-------------------------------|-----------------|-------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------------|-------------------------------------------------|---------------------------------|-----------------------------|-------------------------|--|
| CL                            |                 | T <u>Ta</u> | llanga                                                                                                                         | tta Be                 | eef Pty                  | Ltd                                             | PROJECT NAME LOTS 50 and M1456  |                             |                         |  |
|                               |                 |             | JMRF                                                                                                                           | R _2                   | 0049                     |                                                 |                                 |                             |                         |  |
| DA                            |                 | NG C        |                                                                                                                                | <u>20/10</u><br>АСТО   | )/20<br>) <b>R</b>       | COMPLETED                                       | SLOPE 90°                       | L<br>E                      | BEARING                 |  |
| EC                            | UIPI            | MENT        | _5 to                                                                                                                          | nne e                  | excava                   | tor                                             | HOLE LOCATION _406312           | 6505233                     |                         |  |
| нс                            | DLE S           | SIZE        | 0.5m                                                                                                                           | x1.5n                  | n                        |                                                 | LOGGED BY FH                    | (                           | CHECKED BY KB           |  |
| NC                            |                 |             |                                                                                                                                |                        |                          |                                                 |                                 |                             |                         |  |
| Method                        | Water           | RL<br>(m)   | Depth<br>(m)                                                                                                                   | Graphic Log            | Classification<br>Symbol | Material Description                            | n                               | Samples<br>Tests<br>Remarks | Additional Observations |  |
|                               |                 |             |                                                                                                                                | <u>x17</u> x<br>1/ x1/ |                          | TOPSOIL: Loose, dark grey, silty sand with root | ets                             |                             |                         |  |
|                               | Not Encountered |             | <br>0. <u>5</u>                                                                                                                |                        | GPS                      | GRAVELLY SAND / LATERITE: Very dense (ce<br>dry | mented), fine to coarse, brown, |                             |                         |  |
|                               |                 |             | -<br>1. <u>0</u><br>-<br>-<br>1. <u>5</u><br>-<br>-<br>2 <u>.0</u><br>-<br>-<br>-<br>2 <u>.0</u><br>-<br>-<br>-<br>2 <u>.5</u> |                        |                          | REFUSAL<br>Borehole TH16 terminated at 0.8m     |                                 |                             |                         |  |
| E                                           | 3               | G           | Brown G                                       | eotechi                  | nical                                   |                         | E                               | BOREHO                      | DLE NUMBER TH17<br>PAGE 1 OF 1 |
|---------------------------------------------|-----------------|-------------|-----------------------------------------------|--------------------------|-----------------------------------------|-------------------------|---------------------------------|-----------------------------|--------------------------------|
| CL                                          | IEN             | T <u>Ta</u> | ı<br>Ilangatta B                              | leef Pty                 | Ltd                                     |                         | PROJECT NAME LOTS               | 50 and M145                 | 6                              |
| PR                                          | OJE             |             | JMBER _2                                      | 20049                    |                                         |                         |                                 | UCHEA                       |                                |
| DA                                          | TE S            | STAR        | <b>TED</b> <u>20/1</u>                        | 0/20                     | COMPLETED                               | 20/10/20                | R.L. SURFACE                    |                             | DATUM                          |
| DR                                          | ILLI            | NG CO       | ONTRACT                                       | OR                       |                                         |                         | SLOPE <u>90°</u>                |                             | BEARING                        |
| EQ                                          |                 |             | <u>5 tonne</u>                                | <u>excava</u><br>m       | tor                                     |                         | HOLE LOCATION 406063            | 6505177                     |                                |
|                                             |                 | 512E .      | 0.01111.0                                     | [[]                      |                                         |                         |                                 |                             |                                |
| Method                                      | Water           | RL<br>(m)   | (m)<br>Graphic Log                            | Classification<br>Symbol |                                         | Material Descript       | ion                             | Samples<br>Tests<br>Remarks | Additional Observations        |
|                                             |                 |             | $\frac{\frac{\lambda^{1}}{\lambda}}{\lambda}$ |                          | TOPSOIL: Loose, dark gre                | ey, silty sand with roo | tlets                           |                             |                                |
| N.IA.GDT 15/12/20                           | Not Encountered |             |                                               | GP-GC                    | SAND: Loose to medium of<br>gravel, dry | dense, fine to coarse   | grained, grey, with silt, trace |                             |                                |
| BOREHOLE/TEST PIT MUCHAE.GPJ GINT STD AUSTE |                 |             | -<br>2 <u>.0</u><br>-<br>-<br>-<br>2.5        |                          |                                         |                         |                                 |                             |                                |

| E      | 3               | G             | Brown G                     | eotech                   | nical                                  |                        |                                   | BOREH                       | DLE NUMBER TH18<br>PAGE 1 OF 1 |
|--------|-----------------|---------------|-----------------------------|--------------------------|----------------------------------------|------------------------|-----------------------------------|-----------------------------|--------------------------------|
| CL     | IEN             | <b>r</b> _ Ta | ı<br>Ilangatta B            | eef Pty                  | / Ltd                                  |                        | PROJECT NAME                      | 50 and M145                 | 3                              |
| PR     | OJE             | CT N          | UMBER _2                    | 20049                    |                                        |                        | PROJECT LOCATION                  | /UCHEA                      |                                |
| DA     | TE S            | STAR          | TED _ 20/1                  | 0/20                     | COMPLETED                              | 20/10/20               | R.L. SURFACE                      |                             | DATUM                          |
| DR     | ILLI            | NG C          | ONTRACTO                    | OR                       |                                        |                        | <b>SLOPE</b> 0°                   |                             | BEARING                        |
| EQ     | UIPI            | MENT          | 5 tonne                     | excava                   | tor                                    |                        | HOLE LOCATION40576                | 8 6505169                   |                                |
| но     | DLE S           | SIZE          | 0.5mx1.5                    | m                        |                                        |                        | LOGGED BYFH                       |                             | CHECKED BY KB                  |
| NC     | TES             | <u> </u>      |                             | 1                        | 1                                      |                        |                                   |                             |                                |
| Method | Water           | RL<br>(m)     | Graphic Log                 | Classification<br>Symbol |                                        | Material Descri        | ption                             | Samples<br>Tests<br>Remarks | Additional Observations        |
|        |                 |               | . <u>x<sup>1</sup> /y</u> . | . <u>.</u>               | TOPSOIL: Loose, dark gre               | ey, silty sand with ro | ootlets                           |                             |                                |
|        |                 |               |                             | SP-SM                    | SAND: Loose to medium o<br>gravel, dry | dense, fine to coars   | e grained, grey, with silt, trace |                             |                                |
|        | Not Encountered |               |                             |                          |                                        |                        |                                   |                             |                                |
|        |                 |               |                             |                          |                                        |                        |                                   |                             |                                |
|        |                 |               | 1 <u>.5</u>                 |                          |                                        |                        |                                   |                             |                                |
|        | -               |               |                             | 8                        | REFUSAL                                |                        |                                   |                             |                                |
| ž      |                 |               |                             |                          | Borehole TH18 terminated               | d at 1.6m              |                                   |                             |                                |
| 10.2   |                 |               |                             |                          |                                        |                        |                                   |                             |                                |
|        |                 |               |                             |                          |                                        |                        |                                   |                             |                                |
|        |                 |               |                             |                          |                                        |                        |                                   |                             |                                |
|        |                 |               | 20                          |                          |                                        |                        |                                   |                             |                                |
| 5      |                 |               | 2.0                         |                          |                                        |                        |                                   |                             |                                |
| Ď      |                 |               |                             |                          |                                        |                        |                                   |                             |                                |
|        |                 |               |                             |                          |                                        |                        |                                   |                             |                                |
|        |                 |               |                             |                          |                                        |                        |                                   |                             |                                |
| 2      |                 |               |                             |                          |                                        |                        |                                   |                             |                                |
|        |                 |               |                             |                          |                                        |                        |                                   |                             |                                |
|        |                 |               | 25                          |                          |                                        |                        |                                   |                             |                                |
|        | 1               |               | 2.3                         |                          |                                        |                        |                                   | 1                           | 1                              |

STD AUSTRALIA.GDT 15/12/20 LNIC Цd

| E      | 3      | G             | Brow         | vn Ge                 | eotechr                  | nical                                          |                                   | BOREHO                      | DLE NUMBER TH19<br>PAGE 1 OF 1 |
|--------|--------|---------------|--------------|-----------------------|--------------------------|------------------------------------------------|-----------------------------------|-----------------------------|--------------------------------|
| CL     | IENT   | <b>r</b> _ Ta | llangat      | tta Be                | ef Pty                   | Ltd                                            | PROJECT NAME LOTS                 | 50 and M1456                | 3                              |
| PR     | OJE    | CT N          | UMBER        | R _2                  | 0049                     |                                                |                                   | IUCHEA                      |                                |
| DA     | TE S   | STAR          | TED          | 20/10                 | /20                      | <b>COMPLETED</b> 20/10/20                      | R.L. SURFACE                      |                             | DATUM                          |
| DR     | RILLI  | NG C          | ONTR/        | асто                  | R                        |                                                | _ <b>SLOPE</b> _ 90°              |                             | BEARING                        |
| EQ     | UIPI   | MENT          | 5 to         | nne e                 | excava                   | tor                                            | HOLE LOCATION 40546               | 3 6505127                   |                                |
| но     | DLE S  | SIZE          | 0.5m         | x1.5n                 | <u>۱</u>                 |                                                | _ LOGGED BY _FH                   |                             | CHECKED BY KB                  |
| NO     | DTES   | \$            | <u> </u>     |                       |                          |                                                |                                   |                             |                                |
| Method | Water  | RL<br>(m)     | Depth<br>(m) | Graphic Log           | Classification<br>Symbol | Material Descrip                               | tion                              | Samples<br>Tests<br>Remarks | Additional Observations        |
|        |        |               |              | <u>x 1, x</u>         |                          | TOPSOIL: Loose, dark grey, silty sand with roo | otlets                            |                             |                                |
|        |        |               | -            | $\frac{1}{2}$         | GPS                      | SANDY GRAVEL: Medium dense to dense, fin       | e to coarse grained, grey, trace  |                             |                                |
|        |        |               |              | ، نن،<br>0. رە        |                          | Siit, dry                                      |                                   |                             |                                |
|        |        |               |              | ي.ن.ز<br>م.ز.زه       |                          |                                                |                                   |                             |                                |
|        |        |               |              |                       |                          |                                                |                                   |                             |                                |
|        |        |               |              | ، ب<br>ە.(ب)<br>ە.(ب) |                          |                                                |                                   |                             |                                |
|        |        |               | 0.5          | 6 D<br>0 (            |                          |                                                |                                   |                             |                                |
|        |        |               |              | $\circ$               |                          |                                                |                                   | Fines=4%<br>Sand=26%        |                                |
|        |        |               |              |                       |                          |                                                |                                   | Gravel=70%                  |                                |
|        |        |               |              | ، ن<br>۲. ج           |                          |                                                |                                   |                             |                                |
|        | red    |               |              | 0.0                   |                          |                                                |                                   |                             |                                |
|        | ountei |               |              |                       | GP-GC                    | GRAVELLY SAND with CLAY: Very dense, fin       | e to coarse, yellowish brown, dry |                             |                                |
|        | t Enco |               | -            |                       |                          |                                                |                                   |                             |                                |
|        | Not    |               | 1.0          |                       |                          |                                                |                                   |                             |                                |
|        |        |               |              |                       |                          |                                                |                                   |                             |                                |
|        |        |               | -            |                       |                          |                                                |                                   |                             |                                |
|        |        |               | _            |                       |                          |                                                |                                   | LL=28                       |                                |
|        |        |               |              |                       |                          |                                                |                                   | PL=14<br>Fines=19%          |                                |
|        |        |               |              |                       |                          |                                                |                                   | LS=4%                       |                                |
|        |        |               | -            |                       |                          |                                                |                                   |                             |                                |
|        |        |               | 1.5          |                       |                          |                                                |                                   |                             |                                |
|        |        |               |              |                       |                          |                                                |                                   |                             |                                |
| 12/20  |        |               |              | ŝ                     |                          |                                                |                                   |                             |                                |
| е<br>1 |        |               |              |                       |                          |                                                |                                   |                             |                                |
| LIA.GI |        |               |              | ŝ                     |                          |                                                |                                   |                             |                                |
| STRA   |        |               |              |                       |                          | REFUSAL<br>Borehole TH19 terminated at 1.8m    |                                   | 1                           |                                |
| D A U  |        |               |              |                       |                          |                                                |                                   |                             |                                |
| N<br>N |        |               | 2.0          |                       |                          |                                                |                                   |                             |                                |
| 5      |        |               |              |                       |                          |                                                |                                   |                             |                                |
| HAE.G  |        |               | -            |                       |                          |                                                |                                   |                             |                                |
| MUCF   |        |               |              |                       |                          |                                                |                                   |                             |                                |
| 1      |        |               |              |                       |                          |                                                |                                   |                             |                                |
| I ESI  |        |               | -            |                       |                          |                                                |                                   |                             |                                |
| TOLE   |        |               |              |                       |                          |                                                |                                   |                             |                                |
| ORE    |        |               | 25           |                       |                          |                                                |                                   |                             |                                |
| ц      | 1      | 1             | J            |                       |                          | 1                                              |                                   | 1                           | l                              |

| E                          | 3                             | G                            | Brown G                                        | eotech                           | nical                                                                                                                                                             |                                                                                     | E                                                                                 | OREHO                       | DLE NUMBER TH20<br>PAGE 1 OF 1     |
|----------------------------|-------------------------------|------------------------------|------------------------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------|------------------------------------|
| CL                         |                               | Γ <u>Τ</u> α<br>CT N         | ]<br>Ilangatta E<br>UMBER 2                    | <u>8eef Pty</u><br>20049         | / Ltd                                                                                                                                                             |                                                                                     | _ PROJECT NAME _LOTS {                                                            | 50 and M1456<br>JCHEA       | 3                                  |
| DA<br>DR<br>EQ<br>HC<br>NO | TE S<br>ILLI<br>UIPI<br>DLE S | STAR<br>NG C<br>MENT<br>SIZE | TED _20/1<br>ONTRACTO<br>_5 tonne<br>_0.5mx1.5 | 0/20<br><b>OR</b><br>excava<br>m | completed                                                                                                                                                         | COMPLETED _20/10/20 R.L. SL<br>SLOPE<br>HOLE I<br>LOGGE                             |                                                                                   | 6505190                     | DATUM<br>BEARING<br>CHECKED BY _KB |
| Method                     | Water                         | RL<br>(m)                    | Graphic Log                                    | Classification<br>Symbol         |                                                                                                                                                                   | Material Descrip                                                                    | ption                                                                             | Samples<br>Tests<br>Remarks | Additional Observations            |
|                            | Not Encountered               |                              |                                                |                                  | TOPSOIL: Loose, dark gr         SANDY GRAVEL: Medium         silt, dry         GRAVELLY SAND with C         GRAVELLY SAND with C         Borehole TH20 terminated | ey, silty sand with ro<br>n dense to dense, fi<br>LAY: Very dense, fir<br>d at 1.6m | otlets<br>ne to coarse grained, grey, trace<br>ne to coarse, yellowish brown, dry |                             |                                    |

STD AUSTRALIA.GDT 15/12/20 LNIC Цd

|                                                                | B                                                                                                                      | SG              | Brown Ge                      | eotechi                  | nical                                                                                                                                              |                                                                                                                 | BOREHO                               | DLE NUMBER TH21<br>PAGE 1 OF 1     |  |
|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------|--|
| C<br>P                                                         | LIE                                                                                                                    | NT _            | <br>Tallangatta Be<br>NUMBER2 | eef Pty<br>0049          | Ltd                                                                                                                                                | PROJECT NAME LOTS 50 and M1456 PROJECT LOCATION MUCHEA                                                          |                                      |                                    |  |
| D<br>D<br>H<br>N                                               | DATE STARTED _21/10/20 COMPLETED _21/10/20 DRILLING CONTRACTOR EQUIPMENT _5 tonne excavator HOLE SIZE _0.5mx1.5m NOTES |                 |                               |                          | COMPLETED <u>21/10/20</u>                                                                                                                          | R.L. SURFACE         SLOPE       90°         HOLE LOCATION       405246       650497         LOGGED BY       FH |                                      | DATUM<br>BEARING<br>CHECKED BY _KB |  |
| Mathod                                                         |                                                                                                                        | Nater<br>(m     | - Debth<br>Graphic Log        | Classification<br>Symbol | Material Descripti                                                                                                                                 | on                                                                                                              | Samples<br>Tests<br>Remarks          | Additional Observations            |  |
| BOREHOLE / TEST PIT MUCHAE.GPJ GINT STD AUSTRALIA.GDT 15/12/20 |                                                                                                                        | Not Encountered |                               | SP-SM                    | TOPSOIL: Loose, dark grey, silty sand with root<br>SAND: Medium dense, fine to coarse grained, y<br>trace gravel, dry<br>with some clay below 1.5m | ellowish brown & grey, with silt,                                                                               | LL=35<br>PL=16<br>Fines=24%<br>LS=6% |                                    |  |

| E      | 3(              | G           | Brov                                                                                        | vn Ge        | eotechr                  | nical                                  |                           | E                               | BOREHC                      | DLE NUMBER TH22<br>PAGE 1 OF 1 |
|--------|-----------------|-------------|---------------------------------------------------------------------------------------------|--------------|--------------------------|----------------------------------------|---------------------------|---------------------------------|-----------------------------|--------------------------------|
| CL     |                 | • <u>Ta</u> | llanga                                                                                      | tta Be       | eef Pty                  | Ltd                                    |                           |                                 | 50 and M1456                | 3                              |
| PR     | OJE             | CT NI       | JMBE                                                                                        | R _2         | 0049                     |                                        |                           | PROJECT LOCATION M              | UCHEA                       |                                |
|        | TES             |             |                                                                                             | 21/10        | )/20<br>P                | COMPLETED                              | 21/10/20                  |                                 |                             |                                |
| EQ     | UIPN            |             | 5 to                                                                                        | nne e        | excava                   | tor                                    |                           | HOLE LOCATION 405246            | 6504978                     |                                |
| но     | LES             | SIZE .      | 0.5m                                                                                        | x1.5n        | n                        |                                        |                           | LOGGED BY FH                    |                             | CHECKED BY KB                  |
| NO     | TES             |             |                                                                                             |              | 1                        |                                        |                           |                                 |                             |                                |
| Method | Water           | RL<br>(m)   | Depth<br>(m)                                                                                | Graphic Log  | Classification<br>Symbol |                                        | Material Description      | n                               | Samples<br>Tests<br>Remarks | Additional Observations        |
|        |                 |             |                                                                                             | <u>×1/</u> × |                          | TOPSOIL: Loose, dark gre               | ey, silty sand with rootl | ets                             |                             |                                |
|        | Not Encountered |             | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |              | SP-SM                    | SAND: Loose to medium o<br>gravel, dry | Jense, fine to medium     | grained, grey, with silt, trace |                             |                                |
|        |                 |             |                                                                                             |              |                          | REFUSAL<br>Borehole TH22 terminated    | at 1.9m                   |                                 |                             |                                |
|        |                 |             | 2 <u>.0</u>                                                                                 |              |                          |                                        |                           |                                 |                             |                                |
|        |                 |             | -                                                                                           |              |                          |                                        |                           |                                 |                             |                                |
|        |                 |             |                                                                                             |              |                          |                                        |                           |                                 |                             |                                |
|        |                 |             |                                                                                             |              |                          |                                        |                           |                                 |                             |                                |
|        |                 |             |                                                                                             |              |                          |                                        |                           |                                 |                             |                                |
|        |                 |             | -                                                                                           |              |                          |                                        |                           |                                 |                             |                                |
|        |                 |             | 2.5                                                                                         |              |                          |                                        |                           |                                 |                             |                                |

| E        | 3(              | G         | Brov          | wn Ge                   | otechr                   | nical                                                   | B                               | BOREH                       | DLE NUMBER TH23<br>PAGE 1 OF 1 |
|----------|-----------------|-----------|---------------|-------------------------|--------------------------|---------------------------------------------------------|---------------------------------|-----------------------------|--------------------------------|
| CL       | IENT            | <u> </u>  | llanga        | tta Be                  | ef Pty                   | Ltd                                                     | PROJECT NAME LOTS               | 50 and M145                 | 6                              |
| PR       | OJE             | CT NI     | JMBE          | R _2                    | 049                      |                                                         | PROJECT LOCATION MU             | JCHEA                       |                                |
| DA<br>DR | TE S<br>IL L II | STARI     | red _<br>Ontr | 21/10<br>АСТО           | /20<br>R                 | <b>COMPLETED</b> <u>21/10/20</u>                        | R.L. SURFACE                    |                             | DATUM<br>BEARING               |
| EQ       | UIPI            | MENT      | _ <u>5 to</u> | nne e                   | excava                   | tor                                                     | HOLE LOCATION 405762            | 405762                      |                                |
| но       | LES             | SIZE _    | 0.5m          | x1.5n                   | 1                        |                                                         | LOGGED BY FH                    |                             | CHECKED BY KB                  |
| NO       | TES             |           |               |                         |                          |                                                         |                                 |                             |                                |
| Method   | Water           | RL<br>(m) | Depth<br>(m)  | Graphic Log             | Classification<br>Symbol | Material Description                                    | n                               | Samples<br>Tests<br>Remarks | Additional Observations        |
|          |                 |           |               | <u>x17/ x</u><br>1/ x1/ |                          | TOPSOIL: Loose, dark grey, silty sand with root         | ets                             |                             |                                |
|          |                 |           | _             |                         | SP-SM                    | SAND: Loose to medium dense, fine to medium gravel, dry | grained, grey, with silt, trace |                             |                                |
|          |                 |           | -             |                         |                          |                                                         |                                 |                             |                                |
|          | Interec         |           | -             | 0                       | GP-GC                    | GRAVELLY SAND with CLAY: Very dense, fine               | to coarse, yellowish brown &    |                             |                                |
|          | Enco            |           | _             |                         |                          | grey, ary                                               |                                 |                             |                                |
|          | Noi             |           | 0 <u>.5</u>   |                         |                          |                                                         |                                 |                             |                                |
|          |                 |           | _             |                         |                          |                                                         |                                 |                             |                                |
|          |                 |           |               |                         |                          |                                                         |                                 |                             |                                |
|          |                 |           |               |                         |                          |                                                         |                                 |                             |                                |
|          |                 |           |               | 010                     |                          | REFUSAL<br>Borehole TH23 terminated at 0.8m             |                                 |                             |                                |
|          |                 |           | _             |                         |                          |                                                         |                                 |                             |                                |
|          |                 |           | 1 <u>.0</u>   |                         |                          |                                                         |                                 |                             |                                |
|          |                 |           | _             |                         |                          |                                                         |                                 |                             |                                |
|          |                 |           | _             |                         |                          |                                                         |                                 |                             |                                |
|          |                 |           |               |                         |                          |                                                         |                                 |                             |                                |
|          |                 |           |               |                         |                          |                                                         |                                 |                             |                                |
|          |                 |           | _             |                         |                          |                                                         |                                 |                             |                                |
|          |                 |           | 1 <u>.5</u>   |                         |                          |                                                         |                                 |                             |                                |
|          |                 |           | -             |                         |                          |                                                         |                                 |                             |                                |
|          |                 |           | -             |                         |                          |                                                         |                                 |                             |                                |
|          |                 |           | -             |                         |                          |                                                         |                                 |                             |                                |
|          |                 |           | _             |                         |                          |                                                         |                                 |                             |                                |
|          |                 |           | 2 <u>.0</u>   |                         |                          |                                                         |                                 |                             |                                |
|          |                 |           |               |                         |                          |                                                         |                                 |                             |                                |
|          |                 |           |               |                         |                          |                                                         |                                 |                             |                                |
|          |                 |           | -             |                         |                          |                                                         |                                 |                             |                                |
|          |                 |           | -             |                         |                          |                                                         |                                 |                             |                                |
|          |                 |           | -             |                         |                          |                                                         |                                 |                             |                                |
|          |                 |           | 2.5           |                         |                          |                                                         |                                 |                             |                                |

| E      | 3(              | G         | Brov                  | wn Ge                      | eotechr                  | nical                                                                                                                | E                               | BOREHO                      | DLE NUMBER TH24<br>PAGE 1 OF 1 |
|--------|-----------------|-----------|-----------------------|----------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------|--------------------------------|
| CL     | IENT            | Ta        | llanga                | tta Be                     | eef Pty                  | Ltd                                                                                                                  | PROJECT NAME LOTS               | 50 and M1456                | )                              |
| PR     | OJE             |           | JMBE                  | <b>R</b> _2                | 0049                     |                                                                                                                      | PROJECT LOCATION _M             | UCHEA                       |                                |
| DA     | TE S            | STAR      | red _                 | 21/10                      | 0/20                     | <b>COMPLETED</b> <u>21/10/20</u>                                                                                     | R.L. SURFACE                    |                             | DATUM                          |
|        |                 |           |                       | ACTO                       | )R                       |                                                                                                                      |                                 | 6504072                     | BEARING                        |
| HO     |                 |           | 0.5m                  | x1.5n                      | n                        |                                                                                                                      | LOGGED BY FH                    | 0304973                     | СНЕСКЕД ВУ КВ                  |
| NO     | TES             |           |                       |                            |                          |                                                                                                                      |                                 |                             |                                |
| Method | Water           | RL<br>(m) | Depth<br>(m)          | Graphic Log                | Classification<br>Symbol | Material Descriptio                                                                                                  | n                               | Samples<br>Tests<br>Remarks | Additional Observations        |
|        |                 |           |                       | <u>x 1/</u> x<br>1/ . x 1/ |                          | TOPSOIL: Loose, dark grey, silty sand with rooth                                                                     | ets                             |                             |                                |
|        | Not Encountered |           | -<br>-<br>0 <u>.5</u> |                            | SP-SM                    | SAND: Loose to medium dense, fine to medium<br>gravel, dry<br>GRAVELLY SAND with CLAY: Very dense, fine<br>grey, dry | grained, grey, with silt, trace |                             |                                |
|        |                 |           |                       |                            | 1                        | REFUSAL<br>Borehole TH24 terminated at 0.7m                                                                          |                                 |                             |                                |
|        |                 |           | _                     |                            |                          |                                                                                                                      |                                 |                             |                                |
|        |                 |           | _                     |                            |                          |                                                                                                                      |                                 |                             |                                |
|        |                 |           | 10                    |                            |                          |                                                                                                                      |                                 |                             |                                |
|        |                 |           |                       |                            |                          |                                                                                                                      |                                 |                             |                                |
|        |                 |           | -                     |                            |                          |                                                                                                                      |                                 |                             |                                |
|        |                 |           | _                     |                            |                          |                                                                                                                      |                                 |                             |                                |
|        |                 |           |                       |                            |                          |                                                                                                                      |                                 |                             |                                |
|        |                 |           |                       |                            |                          |                                                                                                                      |                                 |                             |                                |
|        |                 |           |                       |                            |                          |                                                                                                                      |                                 |                             |                                |
|        |                 |           | 1.5                   |                            |                          |                                                                                                                      |                                 |                             |                                |
|        |                 |           | -                     |                            |                          |                                                                                                                      |                                 |                             |                                |
|        |                 |           | _                     |                            |                          |                                                                                                                      |                                 |                             |                                |
|        |                 |           |                       |                            |                          |                                                                                                                      |                                 |                             |                                |
|        |                 |           |                       |                            |                          |                                                                                                                      |                                 |                             |                                |
|        |                 |           |                       |                            |                          |                                                                                                                      |                                 |                             |                                |
|        |                 |           | 2 <u>.0</u>           |                            |                          |                                                                                                                      |                                 |                             |                                |
|        |                 |           | -                     |                            |                          |                                                                                                                      |                                 |                             |                                |
|        |                 |           | -                     |                            |                          |                                                                                                                      |                                 |                             |                                |
|        |                 |           |                       |                            |                          |                                                                                                                      |                                 |                             |                                |
|        |                 |           |                       |                            |                          |                                                                                                                      |                                 |                             |                                |
|        |                 |           |                       |                            |                          |                                                                                                                      |                                 |                             |                                |
|        |                 | 1         | 2.5                   |                            |                          |                                                                                                                      |                                 |                             |                                |

| E        | 3                     | G                             | Brov                | wn Ge                            | eotechr                  | nical                                               | E                                        | BOREHO                          | LE NUMBER TH25<br>PAGE 1 OF 1 |  |
|----------|-----------------------|-------------------------------|---------------------|----------------------------------|--------------------------|-----------------------------------------------------|------------------------------------------|---------------------------------|-------------------------------|--|
| CL<br>PR |                       | Γ <u>Τ</u> α<br><b>CT N</b> I | llanga<br>JMBE      | itta Be<br><b>R</b> _2(          | eef Pty<br>0049          | Ltd                                                 | PROJECT NAME LOTS                        | LOTS 50 and M1456<br>DN _MUCHEA |                               |  |
| DA<br>DR | TE S                  |                               | TED _               | 21/10<br>ACTO                    | )/20<br>R                | COMPLETED _21/10/20                                 | R.L. SURFACE           SLOPE         90° | [                               | DATUM<br>BEARING              |  |
| HC<br>NC | UIPI<br>DLE S<br>DTES | SIZE                          | <u>5 to</u><br>0.5m | x1.5m                            | n<br>n                   | tor                                                 | LOGGED BY FH                             | 6504795<br>(                    | CHECKED BY KB                 |  |
| Method   | Water                 | RL<br>(m)                     | Depth<br>(m)        | Graphic Log                      | Classification<br>Symbol | Material Descriptio                                 | n                                        | Samples<br>Tests<br>Remarks     | Additional Observations       |  |
|          |                       |                               | _                   | <u>, 1/ 5</u><br>1/ 5 <u>1 /</u> | SD SM                    | TOPSOIL: Loose, dark grey, silty sand with root     | ets                                      |                                 |                               |  |
|          | Encountered           |                               | -                   |                                  |                          | gravel, dry                                         | granica, grey, war sit, trace            |                                 |                               |  |
|          | Not                   |                               |                     |                                  | GP-GC                    | GRAVELLY SAND with CLAY: Very dense, fine grey, dry | to coarse, yellowish brown &             |                                 |                               |  |
|          |                       |                               | _                   |                                  |                          |                                                     |                                          |                                 |                               |  |
|          |                       |                               | _                   | - 14.04                          |                          | REFUSAL<br>Borehole TH25 terminated at 0.7m         |                                          |                                 |                               |  |
|          |                       |                               | _                   |                                  |                          |                                                     |                                          |                                 |                               |  |
|          |                       |                               | 1 <u>.0</u>         |                                  |                          |                                                     |                                          |                                 |                               |  |
|          |                       |                               | _                   |                                  |                          |                                                     |                                          |                                 |                               |  |
|          |                       |                               | _                   |                                  |                          |                                                     |                                          |                                 |                               |  |
|          |                       |                               |                     |                                  |                          |                                                     |                                          |                                 |                               |  |
|          |                       |                               | _                   |                                  |                          |                                                     |                                          |                                 |                               |  |
|          |                       |                               | _                   |                                  |                          |                                                     |                                          |                                 |                               |  |
|          |                       |                               | _                   |                                  |                          |                                                     |                                          |                                 |                               |  |
|          |                       |                               | 2 <u>.0</u>         |                                  |                          |                                                     |                                          |                                 |                               |  |
|          |                       |                               | -                   |                                  |                          |                                                     |                                          |                                 |                               |  |
|          |                       |                               | _                   |                                  |                          |                                                     |                                          |                                 |                               |  |
|          |                       |                               | 2.5                 |                                  |                          |                                                     |                                          |                                 |                               |  |

| E              | 3                 | G                    | Brov                | wn Ge                  | eotechr                  | nical                                                                                                                                                                                                                | E                                                                      | BOREHO                      | DLE NUMBER TH26<br>PAGE 1 OF 1 |
|----------------|-------------------|----------------------|---------------------|------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------|--------------------------------|
| CL<br>PR       | IENT<br>OJE       | Γ <u>Τa</u><br>CT NI | llanga<br>JMBE      | itta Be<br><b>R</b> _2 | eef Pty<br>0049          | Ltd                                                                                                                                                                                                                  | PROJECT NAME _ LOTS :<br>PROJECT LOCATION _ MI                         | 50 and M1456<br>UCHEA       | 3                              |
| DA<br>DR       | TE S              | STAR                 | red _<br>Ontra      | 21/10<br>ACTO          | )/20<br>R                | COMPLETED _21/10/20                                                                                                                                                                                                  | R.L. SURFACE<br>SLOPE _90°                                             |                             | DATUM<br>BEARING               |
| EQ<br>HC<br>NC | UIPI              | MENT<br>SIZE         | <u>5 to</u><br>0.5m | nne e<br>x1.5n         | excavat<br>n             | tor                                                                                                                                                                                                                  | HOLE LOCATION 405946<br>LOGGED BY FH                                   | 6504827                     | CHECKED BY KB                  |
| Method         | Water             | RL<br>(m)            | Depth<br>(m)        | Graphic Log            | Classification<br>Symbol | Material Descriptio                                                                                                                                                                                                  | n                                                                      | Samples<br>Tests<br>Remarks | Additional Observations        |
|                | Not Encountered M |                      |                     |                        | GP-GC                    | TOPSOIL: Loose, dark grey, silty sand with root<br>SAND: Loose to medium dense, fine to medium<br>gravel, dry<br>GRAVELLY SAND with CLAY: Very dense, fine<br>grey, dry<br>REFUSAL<br>Borehole TH26 terminated at 1m | ets<br>grained, grey, with silt, trace<br>to coarse, yellowish brown & |                             |                                |
|                |                   |                      | 2.5                 |                        |                          |                                                                                                                                                                                                                      |                                                                        |                             |                                |

| E      | 3               | G           | Brov         | wn Ge          | eotechr                  | nical                                                      | B                               | BOREHO                      | PLE NUMBER TH27<br>PAGE 1 OF 1 |
|--------|-----------------|-------------|--------------|----------------|--------------------------|------------------------------------------------------------|---------------------------------|-----------------------------|--------------------------------|
| CL     | IENT            | Г <u>Та</u> | llanga       | itta Be        | ef Pty                   | Ltd                                                        | PROJECT NAME LOTS 5             | 50 and M1456                |                                |
| PR     | OJE             |             | JMBE         | R _2           | 0049                     |                                                            | PROJECT LOCATION _ML            | JCHEA                       |                                |
|        | TE S            |             |              | 21/10          | )/20<br>P                | COMPLETED _21/10/20                                        |                                 |                             |                                |
| EQ     | UIPI            |             | 5 to         | onne e         | excava                   | tor                                                        | HOLE LOCATION 405784            | 6504955                     |                                |
| но     | LE S            | SIZE        | 0.5m         | x1.5n          | n                        |                                                            | LOGGED BY _FH                   |                             | CHECKED BY KB                  |
| NO     | TES             | ;           |              |                | 1                        | 1                                                          |                                 |                             |                                |
| Method | Water           | RL<br>(m)   | Depth<br>(m) | Graphic Log    | Classification<br>Symbol | Material Descripti                                         | on                              | Samples<br>Tests<br>Remarks | Additional Observations        |
|        |                 |             |              | <u>x' 1/</u> x |                          | TOPSOIL: Loose, dark grey, silty sand with root            | lets                            |                             |                                |
|        | Not Encountered |             | -            |                | SP-SM                    | SAND: Loose to medium dense, fine to medium<br>gravel, dry | grained, grey, with silt, trace |                             |                                |
|        |                 |             | 0 <u>.5</u>  | 0              | GP-GC                    | GRAVELLY SAND with CLAY: Very dense, fine                  | to coarse, yellowish brown &    |                             |                                |
|        |                 |             | _            |                |                          | grey, dry                                                  |                                 |                             |                                |
|        |                 |             |              |                |                          | REFUSAL<br>Borehole TH27 terminated at 0.7m                |                                 |                             |                                |
|        |                 |             | -            |                |                          |                                                            |                                 |                             |                                |
|        |                 |             | _            |                |                          |                                                            |                                 |                             |                                |
|        |                 |             | 1 <u>.0</u>  |                |                          |                                                            |                                 |                             |                                |
|        |                 |             |              |                |                          |                                                            |                                 |                             |                                |
|        |                 |             |              |                |                          |                                                            |                                 |                             |                                |
|        |                 |             | _            |                |                          |                                                            |                                 |                             |                                |
|        |                 |             | -            |                |                          |                                                            |                                 |                             |                                |
|        |                 |             | -            |                |                          |                                                            |                                 |                             |                                |
|        |                 |             | 1 <u>.5</u>  |                |                          |                                                            |                                 |                             |                                |
|        |                 |             |              |                |                          |                                                            |                                 |                             |                                |
|        |                 |             |              |                |                          |                                                            |                                 |                             |                                |
|        |                 |             |              |                |                          |                                                            |                                 |                             |                                |
|        |                 |             |              |                |                          |                                                            |                                 |                             |                                |
|        |                 |             | -            |                |                          |                                                            |                                 |                             |                                |
|        |                 |             | 2 <u>.0</u>  |                |                          |                                                            |                                 |                             |                                |
|        |                 |             | -            |                |                          |                                                            |                                 |                             |                                |
|        |                 |             | -            |                |                          |                                                            |                                 |                             |                                |
|        |                 |             |              |                |                          |                                                            |                                 |                             |                                |
|        |                 |             |              |                |                          |                                                            |                                 |                             |                                |
|        |                 |             |              |                |                          |                                                            |                                 |                             |                                |
|        |                 |             | 2.5          |                |                          | l                                                          |                                 |                             |                                |

|        | 3(     | G         | Brov         | wn Ge                             | eotechr                  | nical                                                   | E                            | BOREH                       | DLE NUMBER TH28<br>PAGE 1 OF 1 |
|--------|--------|-----------|--------------|-----------------------------------|--------------------------|---------------------------------------------------------|------------------------------|-----------------------------|--------------------------------|
| CL     |        |           | llanga       | tta Be                            | eef Pty                  | Ltd                                                     |                              | 50 and M145                 | 6                              |
|        | 0JE    |           |              | rt <u>2</u>                       | 0049                     |                                                         |                              |                             |                                |
|        | ILLII  | NG CO     |              | <u>21/10</u><br>ACTO              | )/20<br>) <b>R</b>       | COMPLETED <u>21/10/20</u>                               | R.L. SUKFACE                 |                             | BEARING                        |
| EQ     | UIP    | IENT      | 5 to         | onne e                            | excava                   | tor                                                     | HOLE LOCATION _405541        | 6504777                     |                                |
| но     | LE S   | SIZE _    | 0.5m         | x1.5n                             | n                        |                                                         | LOGGED BY FH                 |                             | CHECKED BY KB                  |
| NO     | TES    |           |              |                                   |                          |                                                         |                              |                             |                                |
| Method | Water  | RL<br>(m) | Depth<br>(m) | Graphic Log                       | Classification<br>Symbol | Material Descriptio                                     | n                            | Samples<br>Tests<br>Remarks | Additional Observations        |
|        |        |           |              | <u>\\</u><br><u>\</u><br><u>\</u> |                          | TOPSOIL: Loose, dark grey, silty sand with rooth        | ets                          |                             |                                |
|        |        |           | _            |                                   | SP-SM                    | SAND: Loose to medium dense, fine to medium gravel, dry | grained, grey, with silt and |                             |                                |
|        |        |           | _            |                                   |                          |                                                         |                              |                             |                                |
|        |        |           | _            |                                   |                          |                                                         |                              |                             |                                |
|        | tered  |           | -            |                                   |                          |                                                         |                              |                             |                                |
|        | ncount |           | 0 <u>.</u> 5 |                                   |                          |                                                         |                              |                             |                                |
|        | Not E  |           |              |                                   |                          |                                                         |                              |                             |                                |
|        |        |           | _            |                                   | GP-GC                    | GRAVELLY SAND with CLAY: Very dense, fine a grey, dry   | to coarse, yellowish brown & |                             |                                |
|        |        |           | _            |                                   |                          |                                                         |                              |                             |                                |
|        |        |           | _            |                                   |                          |                                                         |                              |                             |                                |
|        |        |           | _            |                                   |                          |                                                         |                              |                             |                                |
|        |        |           | 1.0          |                                   |                          |                                                         |                              |                             |                                |
|        |        |           |              | a 5077                            |                          | REFUSAL<br>Borehole TH28 terminated at 1m               |                              |                             |                                |
|        |        |           | -            |                                   |                          |                                                         |                              |                             |                                |
|        |        |           | -            |                                   |                          |                                                         |                              |                             |                                |
|        |        |           | _            |                                   |                          |                                                         |                              |                             |                                |
|        |        |           | _            |                                   |                          |                                                         |                              |                             |                                |
|        |        |           | 1.5          |                                   |                          |                                                         |                              |                             |                                |
|        |        |           |              |                                   |                          |                                                         |                              |                             |                                |
|        |        |           | -            |                                   |                          |                                                         |                              |                             |                                |
|        |        |           | _            |                                   |                          |                                                         |                              |                             |                                |
|        |        |           | -            |                                   |                          |                                                         |                              |                             |                                |
|        |        |           | _            |                                   |                          |                                                         |                              |                             |                                |
|        |        |           | 2.0          |                                   |                          |                                                         |                              |                             |                                |
|        |        |           |              |                                   |                          |                                                         |                              |                             |                                |
|        |        |           | _            |                                   |                          |                                                         |                              |                             |                                |
|        |        |           | _            |                                   |                          |                                                         |                              |                             |                                |
|        |        |           | _            |                                   |                          |                                                         |                              |                             |                                |
|        |        |           | _            |                                   |                          |                                                         |                              |                             |                                |
|        |        |           | 2.5          |                                   |                          |                                                         |                              |                             |                                |
|        |        |           | 2.5          |                                   |                          |                                                         |                              |                             |                                |

|        | 3                | G            | Browr        | n Geo                                   | otechr                   | nical                                          | E                                            | BOREHO                             | DLE NUMBER TH29<br>PAGE 1 OF 1 |
|--------|------------------|--------------|--------------|-----------------------------------------|--------------------------|------------------------------------------------|----------------------------------------------|------------------------------------|--------------------------------|
| CL     | IEN <sup>-</sup> | T <u>T</u> a | llangatt     | a Be                                    | ef Pty                   | Ltd                                            | PROJECT NAME LOTS                            | 50 and M1456                       | 6                              |
| PR     | OJE              | CT N         | UMBER        | _20                                     | 049                      |                                                | _ PROJECT LOCATION _M                        | IUCHEA                             |                                |
| DA     | TE S             | STAR         |              | 1/10/                                   | /20                      | <b>COMPLETED</b> <u>21/10/20</u>               |                                              |                                    |                                |
| EO     | UIP              |              | 5 ton        | ne ex                                   | K                        | tor                                            | BUPE 90 <sup>-</sup><br>HOLE LOCATION 405342 | 6504804                            | DEAKING                        |
| но     | DLE :            | SIZE         | 0.5mx        | 1.5m                                    |                          |                                                |                                              |                                    | CHECKED BY KB                  |
| NC     | DTES             | \$           |              |                                         |                          | 1                                              |                                              |                                    |                                |
| Method | Water            | RL<br>(m)    | Depth<br>(m) | Graphic Log                             | Classification<br>Symbol | Material Descript                              | ion                                          | Samples<br>Tests<br>Remarks        | Additional Observations        |
|        |                  |              | <u>.</u>     | <u>, 14</u><br>                         |                          | TOPSOIL: Loose, dark grey, silty sand with roo | tlets                                        |                                    |                                |
|        |                  |              | <u> </u>     |                                         | GPS                      | SANDY GRAVEL: Medium dense, fine to medi       | um grained, grey, with silt, dry             |                                    | _                              |
|        | p                |              |              |                                         | 3P-GC                    | GRAVELLY SAND with CLAY: Very dense fine       | e to coarse, vellowish brown, dry            | Fines=5%<br>Sand=27%<br>Gravel=68% | 6                              |
|        | Not Encountere   |              |              | A C A C A C A C A C A C A C A C A C A C |                          |                                                |                                              | LL=23<br>PL=17<br>LS=2%            |                                |
|        |                  |              |              |                                         |                          | REFUSAL<br>Borehole TH29 terminated at 1.3m    |                                              |                                    |                                |
|        |                  |              | 2.0          |                                         |                          |                                                |                                              |                                    |                                |

| E                                                  | 3                                | G                            | Brown G                                        | eotech                   | nical                                                                                                                                                                                                                                                                                    | E                                                             | BOREHO                      | DLE NUMBER TH30<br>PAGE 1 OF 1     |
|----------------------------------------------------|----------------------------------|------------------------------|------------------------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------|------------------------------------|
| CL                                                 |                                  | Г <u>Та</u><br>СТ N          | ]<br>Illangatta B                              | eef Pty<br>∩∩⊿9          | / Ltd                                                                                                                                                                                                                                                                                    | _ PROJECT NAME LOTS                                           | 50 and M1456                | 6                                  |
| DA<br>DF<br>EC<br>HC                               | ATE S<br>RILLI<br>QUIPI<br>DLE S | STAR<br>NG C<br>MENT<br>SIZE | TED _21/1<br>ONTRACTO<br>_5 tonne<br>_0.5mx1.5 | 0/20<br>DR<br>excava     | tor                                                                                                                                                                                                                                                                                      | R.L. SURFACE<br>SLOPE<br>HOLE LOCATION405416<br>LOGGED BY _FH | 6504605                     | DATUM<br>BEARING<br>CHECKED BY _KB |
| Method                                             | Water                            | 8<br>RL<br>(m)               | (m)<br>Graphic Log                             | Classification<br>Symbol | Material Descrip                                                                                                                                                                                                                                                                         | otion                                                         | Samples<br>Tests<br>Remarks | Additional Observations            |
| 3DT 15/12/20                                       | Not Encountered                  |                              |                                                | GP-GC                    | TOPSOIL: Loose, dark grey, silty sand with ro         SANDY GRAVEL: Medium dense, fine to med         SANDY GRAVEL: Medium dense, fine to med         GRAVELLY SAND with CLAY: Very dense, fir         GRAVELLY SAND with CLAY: Very dense, fir         Borehole TH30 terminated at 1.3m | ium grained, grey, with silt, dry                             |                             |                                    |
| BOREHOLE / TEST PIT MUCHAE.GPJ GINT STD AUSTRALIA. |                                  |                              | 2.0                                            |                          |                                                                                                                                                                                                                                                                                          |                                                               |                             |                                    |

| PUENT     Talangata Bach Py Ltd     PROJECT NAME_LOTS 50 and M1456       PROJECT NUMBER     20049     PROJECT NAME_LOTS 50 and M1456       DATE STARTED 21/10/20     COMPLETED 21/10/20     RL SURFACE     DATUM       DATE STARTED 21/10/20     CLOMPLETED 21/10/20     RL SURFACE     DATUM       BULING CONTRACTOR     COMPLETED 21/10/20     RL SURFACE     DATUM       EQUIPMENT     5 tonne excavator     HOLE LOCATION 405570     6504604       HOLE SCATION 1.5m     LOGGED BY FH     CHECKED BY KB       NOTES     Image: Start S                                                                                                                                                                                                                                                                                                                                        | LE NUMBER TH31<br>PAGE 1 OF 1 | BOREHC                      | В                                                     | nnical                                                | otechr                   | vn Ge                     | Brov           | G                          | 3               |                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------|-------------------------------------------------------|-------------------------------------------------------|--------------------------|---------------------------|----------------|----------------------------|-----------------|----------------|
| DATE STARTED     21/10/20     COMPLETED     21/10/20     R.L. SURFACE     DATUM       DRILLING CONTRACTOR     SLOPE     90"     BEARING        EQUIPMENT     5 Ionne excavator     HOLE IOCATION     405570     6504004       NOTES     LOGGED BY     FH     CHECKED BY     KB       NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               | 50 and M1456<br>//UCHEA     | PROJECT NAME LOTS 5                                   | y Ltd                                                 | ef Pty<br>0049           | tta Be<br>R _ 20          | llanga<br>JMBE | ¯ <u></u><br><b>CT N</b> I | LIENT<br>ROJE   | CL<br>PR       |
| HOLE SIZE       0.5mx1.5m       LOGGED BY       FH       CMECKED BY       KE         NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DATUM<br>BEARING              | 0 6504604                   | _ R.L. SURFACE<br>SLOPE _90°<br>HOLE LOCATION _405570 | COMPLETED _21/10/20                                   | /20<br>R                 | 21/10<br>ACTO             | ED _<br>ONTR/  | STAR                       | ATE S<br>RILLI  | DA<br>DR<br>EQ |
| NOTES       understand     Summer     Summer     Additional Ob       1     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CHECKED BY KB                 |                             | LOGGED BY FH                                          |                                                       | 1                        | x1.5m                     | 0.5m           | SIZE                       | DLE S           | но             |
| unput by set of the s         |                               |                             |                                                       |                                                       |                          |                           |                |                            | DTES            | NO             |
| Perform     2.3.3     TOPSOL: Loose, dark grey, silty sand with rootlets       Perform     GPS     SANDY GRAVEL: Medium dense, fine to medium grained, grey, with silt, dry       Perform     0.5     GPAVELLY SAND with CLAY: Very dense, fine to coarse, yellowish brown & grey, dry       Perform     0.5     GPAVELLY SAND with CLAY: Very dense, fine to coarse, yellowish brown & grey, dry       Perform     0.5     GPAVELLY SAND with CLAY: Very dense, fine to coarse, yellowish brown & grey, dry       Perform     REFUSAL     Borehole TH31 terminated at 0.7m       1.0     -     -       1.5     -       2.0     -       2.0     -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Additional Observations       | Samples<br>Tests<br>Remarks | otion                                                 | Material Descr                                        | Classification<br>Symbol | Graphic Log               | Depth<br>(m)   | RL<br>(m)                  | Water           | Method         |
| Image: Second Constraints     GPS     SANDY GRAVEL: Medium dense, fine to medium grained, grey, with sill, dry       Image: Second Constraints     0.5     GP-AC       Image: Second Constraints     0.5     GP-AC       Image: Second Constraints     GP-AC     GRAVELLY SAND with CLAY. Very dense, fine to coarse, yellowish brown 8       Image: Second Constraints     Image: Second Constraints     REFUSAL       Image: Second Constraints     REFUSAL       Image: Second Constraints     Second Constraints       Image: Second Constraints     Second Constraint                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |                             | otlets                                                | TOPSOIL: Loose, dark grey, silty sand with r          |                          | <u>, 17</u><br>17 - 51 17 |                |                            |                 |                |
| C C GRAVELLY SAND with CLAY. Very dense, fine to coarse, yellowish brown & grey, dry     grey, dry     GreAde TH31 terminated at 0.7m      C C GreAde TH31 terminated at 0.7m      10      1      1      1      2      2      2      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4        4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4 |                               |                             | lium grained, grey, with silt, dry                    | SANDY GRAVEL: Medium dense, fine to me                | GPS                      |                           |                |                            | Not Encountered |                |
| 1.0     HEFUSAL<br>Borehole TH31 terminated at 0.7m       1.0     -       1.0     -       1.5     -       2.0     -       -     -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |                             | ne to coarse, yellowish brown &                       | C GRAVELLY SAND with CLAY: Very dense, f<br>grey, dry | GP-GC                    |                           |                |                            |                 |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               |                             |                                                       | REFUSAL<br>Borehole TH31 terminated at 0.7m           |                          |                           |                |                            |                 |                |

| BOREHOL<br>Brown Geotechnical |                 |                              |                      |                                            |                          |                                                                                                     |                                      |                                                          | DLE NUMBER TH32<br>PAGE 1 OF 1 |  |
|-------------------------------|-----------------|------------------------------|----------------------|--------------------------------------------|--------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------|--------------------------------|--|
| CL<br>PR                      | IEN1<br>OJE     | Γ <u>Τ</u> α<br><b>CT NI</b> | llanga<br>JMBE       | itta Be<br><b>R</b> _2(                    | eef Pty<br>0049          | / Ltd                                                                                               | PROJECT NAMELOTS {                   | PROJECT NAME _LOTS 50 and M1456 PROJECT LOCATION _MUCHEA |                                |  |
| DA<br>DR                      | TE S            | STAR                         | red _<br>Ontra       | 21/10<br>ACTO                              | )/20<br>PR               | <b>COMPLETED</b> <u>21/10/20</u>                                                                    | R.L. SURFACE<br>SLOPE _90°           |                                                          | DATUM<br>BEARING               |  |
| EQ<br>HO                      | UIPI            | MENT<br>SIZE                 | <u>5 to</u><br>0.5m  | nne e<br>x1.5n                             | excava<br>n              | tor                                                                                                 | HOLE LOCATION 405859<br>LOGGED BY FH | 6504616                                                  | СНЕСКЕД ВУ КВ                  |  |
| NC                            | TES             |                              |                      |                                            | 1                        |                                                                                                     |                                      |                                                          |                                |  |
| Method                        | Water           | RL<br>(m)                    | Depth<br>(m)         | Graphic Log                                | Classification<br>Symbol | Material Description                                                                                | n                                    | Samples<br>Tests<br>Remarks                              | Additional Observations        |  |
|                               |                 |                              |                      | <u>x1 /y</u> <u>x</u><br>1/ . <u>x1 /y</u> |                          | TOPSOIL: Loose, dark grey, silty sand with root                                                     | ets                                  |                                                          |                                |  |
|                               | Not Encountered |                              | _<br><br>0 <u>.5</u> |                                            | GP-GC                    | SANDY GRAVEL: Medium dense, fine to mediu<br>GRAVELLY SAND with CLAY: Very dense, fine<br>grey, dry | m grained, grey, with silt, dry      |                                                          |                                |  |
|                               |                 |                              | _                    |                                            |                          |                                                                                                     |                                      |                                                          |                                |  |
|                               |                 |                              | _                    |                                            |                          | REFUSAL<br>Borehole TH32 terminated at 0.8m                                                         |                                      |                                                          |                                |  |
|                               |                 |                              | 1.0                  |                                            |                          |                                                                                                     |                                      |                                                          |                                |  |
|                               |                 |                              |                      |                                            |                          |                                                                                                     |                                      |                                                          |                                |  |
|                               |                 |                              | _                    |                                            |                          |                                                                                                     |                                      |                                                          |                                |  |
|                               |                 |                              | _                    |                                            |                          |                                                                                                     |                                      |                                                          |                                |  |
|                               |                 |                              | _                    |                                            |                          |                                                                                                     |                                      |                                                          |                                |  |
|                               |                 |                              | 1 <u>.5</u>          |                                            |                          |                                                                                                     |                                      |                                                          |                                |  |
|                               |                 |                              | _                    |                                            |                          |                                                                                                     |                                      |                                                          |                                |  |
|                               |                 |                              | _                    |                                            |                          |                                                                                                     |                                      |                                                          |                                |  |
|                               |                 |                              | _                    |                                            |                          |                                                                                                     |                                      |                                                          |                                |  |
|                               |                 |                              | _                    |                                            |                          |                                                                                                     |                                      |                                                          |                                |  |
|                               |                 |                              | 2 <u>.0</u>          |                                            |                          |                                                                                                     |                                      |                                                          |                                |  |
|                               |                 |                              | _                    |                                            |                          |                                                                                                     |                                      |                                                          |                                |  |
|                               |                 |                              | _                    |                                            |                          |                                                                                                     |                                      |                                                          |                                |  |
|                               |                 |                              | -                    |                                            |                          |                                                                                                     |                                      |                                                          |                                |  |
|                               |                 |                              | _                    |                                            |                          |                                                                                                     |                                      |                                                          |                                |  |
| L                             |                 |                              | 2.5                  |                                            |                          |                                                                                                     |                                      |                                                          |                                |  |

|          | 3        | G                     | Brov                | wn Ge                                                   | eotechi                  | nical                                                  | E                                                           | BOREHC                      | DLE NUMBER TH33<br>PAGE 1 OF 1 |  |
|----------|----------|-----------------------|---------------------|---------------------------------------------------------|--------------------------|--------------------------------------------------------|-------------------------------------------------------------|-----------------------------|--------------------------------|--|
| CL<br>PR |          | Γ <u>Τ</u> α<br>CT ΝΙ | llanga<br>JMBE      | tta Be<br><b>R</b> _2(                                  | eef Pty                  | Ltd                                                    | PROJECT NAME _LOTS 50 and M1456<br>PROJECT LOCATION _MUCHEA |                             |                                |  |
| DA<br>DR | TE S     | STAR                  | ed_<br>Ontr         | 21/10<br>АСТО                                           | )/20<br>R                | <b>COMPLETED</b> <u>21/10/20</u>                       | R.L. SURFACE           SLOPE         90°                    |                             | DATUM<br>BEARING               |  |
| EQ<br>HC | UIPI     | MENT<br>SIZE          | <u>5 to</u><br>0.5m | nne e<br>x1.5m                                          | excava                   | tor                                                    | HOLE LOCATION405984         LOGGED BYFH                     | 6504614                     | CHECKED BY KB                  |  |
| NC       | DTES     | ;                     |                     |                                                         |                          |                                                        |                                                             |                             |                                |  |
| Method   | Water    | RL<br>(m)             | Depth<br>(m)        | Graphic Log                                             | Classification<br>Symbol | Material Descripti                                     | on                                                          | Samples<br>Tests<br>Remarks | Additional Observations        |  |
|          |          |                       |                     | <u>, 17</u> .<br>17 . <u>1</u> 1 .<br>17 . <u>1</u> 1 . |                          | TOPSOIL: Loose, dark grey, silty sand with root        | lets                                                        |                             |                                |  |
|          |          |                       | _                   |                                                         | GPS                      | SANDY GRAVEL: Medium dense, fine to mediu              | Im grained, grey, with silt, dry                            |                             |                                |  |
|          | Intered  |                       | _                   |                                                         |                          |                                                        |                                                             |                             |                                |  |
|          | ot Encol |                       | _                   |                                                         |                          |                                                        |                                                             |                             |                                |  |
|          | Ž        |                       | 0.5                 |                                                         | GP-GC                    | GRAVELLY SAND with CLAY: Very dense, fine<br>grey, dry | to coarse, yellowish brown &                                |                             |                                |  |
|          |          |                       |                     |                                                         |                          |                                                        |                                                             |                             |                                |  |
|          |          |                       |                     |                                                         |                          |                                                        |                                                             |                             |                                |  |
|          |          |                       | _                   |                                                         |                          | REFUSAL<br>Borehole TH33 terminated at 0.7m            |                                                             |                             |                                |  |
|          |          |                       | _                   |                                                         |                          |                                                        |                                                             |                             |                                |  |
|          |          |                       | 1 <u>.0</u>         |                                                         |                          |                                                        |                                                             |                             |                                |  |
|          |          |                       | _                   |                                                         |                          |                                                        |                                                             |                             |                                |  |
|          |          |                       | _                   |                                                         |                          |                                                        |                                                             |                             |                                |  |
|          |          |                       |                     |                                                         |                          |                                                        |                                                             |                             |                                |  |
|          |          |                       | _                   |                                                         |                          |                                                        |                                                             |                             |                                |  |
|          |          |                       | 1 <u>.5</u>         |                                                         |                          |                                                        |                                                             |                             |                                |  |
|          |          |                       | _                   |                                                         |                          |                                                        |                                                             |                             |                                |  |
|          |          |                       | _                   |                                                         |                          |                                                        |                                                             |                             |                                |  |
|          |          |                       | _                   |                                                         |                          |                                                        |                                                             |                             |                                |  |
|          |          |                       | _                   |                                                         |                          |                                                        |                                                             |                             |                                |  |
|          |          |                       | 2 <u>.0</u>         |                                                         |                          |                                                        |                                                             |                             |                                |  |
|          |          |                       | _                   |                                                         |                          |                                                        |                                                             |                             |                                |  |
|          |          |                       | _                   |                                                         |                          |                                                        |                                                             |                             |                                |  |
|          |          |                       | _                   |                                                         |                          |                                                        |                                                             |                             |                                |  |
|          |          |                       | 25                  |                                                         |                          |                                                        |                                                             |                             |                                |  |
|          |          |                       | 2.5                 |                                                         |                          |                                                        |                                                             |                             |                                |  |

| E        | 3(              | G                            | Brov                                                                           | wn Ge       | eotechi                  | nical                                                                                                   | В                               | OREHO                       | LE NUMBER TH34<br>PAGE 1 OF 1 |
|----------|-----------------|------------------------------|--------------------------------------------------------------------------------|-------------|--------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------|-------------------------------|
| CL<br>PR |                 | Γ <u>Τ</u> α<br><b>CT NI</b> | l<br>Ilanga<br>JMBE                                                            | itta Be     | eef Pty<br>0049          | Ltd                                                                                                     | PROJECT NAME LOTS 5             | 0 and M1456<br>JCHEA        |                               |
| DA       | TES             | STAR                         | TED                                                                            | 21/10       | )/20                     | <b>COMPLETED</b> 21/10/20                                                                               | R.L. SURFACE                    | C                           | ATUM                          |
| DR       | ILLI            | NG CO                        | ONTR                                                                           | АСТО        | R                        |                                                                                                         | SLOPE 90°                       | B                           | BEARING                       |
| EQ       | UIPI            | MENT                         | <u>5 to</u>                                                                    | onne e      | excava                   | tor                                                                                                     | HOLE LOCATION 406020            | 6504417                     |                               |
|          |                 | SIZE                         | 0.5m                                                                           | 1.5n        | 1                        |                                                                                                         | LOGGED BY FH                    | C                           | CHECKED BY KB                 |
| Method   | Water           | RL<br>(m)                    | Depth<br>(m)                                                                   | Graphic Log | Classification<br>Symbol | Material Descriptio                                                                                     | n                               | Samples<br>Tests<br>Remarks | Additional Observations       |
|          |                 |                              |                                                                                | <u>\.</u>   |                          | TOPSOIL: Loose, dark grey, silty sand with rooth                                                        | ets                             |                             |                               |
|          | Not Encountered |                              | -<br>-<br>0. <u>5</u><br>-<br>-<br>1.0<br>-<br>1. <u>5</u><br>-<br>-<br>-<br>- |             | GPS<br>GP-GC             | SANDY GRAVEL: Medium dense, fine to medium<br>GRAVELLY SAND with CLAY: Very dense, fine is<br>grey, dry | n grained, grey, with silt, dry |                             |                               |
|          |                 |                              | 2 <u>.0</u>                                                                    |             |                          |                                                                                                         |                                 |                             |                               |
|          |                 |                              |                                                                                |             |                          |                                                                                                         |                                 |                             |                               |
|          |                 |                              | -                                                                              |             |                          |                                                                                                         |                                 |                             |                               |
|          |                 |                              | -                                                                              |             |                          |                                                                                                         |                                 |                             |                               |
|          |                 |                              | -                                                                              |             |                          |                                                                                                         |                                 |                             |                               |
|          |                 |                              | -                                                                              |             |                          |                                                                                                         |                                 |                             |                               |
|          |                 |                              | 2.5                                                                            |             |                          |                                                                                                         |                                 |                             |                               |

| E      | 3(        | G           | Brov                                                                                                                        | wn Ge          | eotechr                  | nical                                               | В                               | OREHO                       | PAGE 1 OF 1             |
|--------|-----------|-------------|-----------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------|-----------------------------------------------------|---------------------------------|-----------------------------|-------------------------|
| CLI    | ENT       | T <u>Ta</u> | llanga                                                                                                                      | itta Be        | ef Pty                   | Ltd                                                 | PROJECT NAME LOTS 5             | 0 and M1456                 |                         |
| PRO    | OJE       |             | JMBE                                                                                                                        | R _2           | 0049                     |                                                     | PROJECT LOCATION _MU            | JCHEA                       |                         |
| DAT    | TES       |             |                                                                                                                             | 21/10          | )/20<br>P                | COMPLETED _21/10/20                                 |                                 |                             |                         |
| EQU    | UIP       |             | 5 to                                                                                                                        | onne e         | xcava                    | tor                                                 | HOLE LOCATION 405736            | 6504450                     | DEARING                 |
| но     | LES       | SIZE        | 0.5m                                                                                                                        | x1.5n          | า                        |                                                     | LOGGED BY FH                    |                             | CHECKED BY KB           |
| NO     | TES       |             |                                                                                                                             |                |                          |                                                     |                                 |                             |                         |
| Method | Water     | RL<br>(m)   | Depth<br>(m)                                                                                                                | Graphic Log    | Classification<br>Symbol | Material Descripti                                  | on                              | Samples<br>Tests<br>Remarks | Additional Observations |
|        |           |             |                                                                                                                             | <u>x' 1/</u> x |                          | TOPSOIL: Loose, dark grey, silty sand with root     | lets                            |                             |                         |
|        | untered   |             | -                                                                                                                           |                | GPS                      | SANDY GRAVEL: Medium dense, fine to mediu           | m grained, grey, with silt, dry |                             |                         |
|        | Not Encor |             | -<br>0 <u>.5</u><br>-                                                                                                       |                | GP-GC                    | GRAVELLY SAND with CLAY: Very dense, fine grey, dry | to coarse, yellowish brown &    |                             |                         |
|        |           |             | 1. <u>0</u><br><br><br>1. <u>5</u><br><br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                |                          | REFUSAL<br>Borehole TH35 terminated at 0.9m         |                                 |                             |                         |

| E         | 3(          | G                    | Brov           | vn Ge                             | eotechr                  | nical                                               | B                                                      | BOREHC                      | DLE NUMBER TH36<br>PAGE 1 OF 1 |  |
|-----------|-------------|----------------------|----------------|-----------------------------------|--------------------------|-----------------------------------------------------|--------------------------------------------------------|-----------------------------|--------------------------------|--|
| CLI<br>PR | IENT<br>OJE | τ <u>Τa</u><br>CT NI | llanga<br>JMBE | tta Be<br><b>R</b> _2             | eef Pty<br>0049          | Ltd                                                 | PROJECT NAME LOTS 50 and M1456 PROJECT LOCATION MUCHEA |                             |                                |  |
| DA<br>DR  | TE S        | STAR                 | ed_<br>        | 21/10<br>ACTO                     | )/20<br>R                | COMPLETED _21/10/20                                 | R.L. SURFACE<br>SLOPE _90°                             |                             | DATUM<br>BEARING               |  |
| EQ        | UIPN        | MENT                 | _5 to          | nne e                             | excava                   | tor                                                 | HOLE LOCATION 405519                                   | 6504466                     |                                |  |
| HO<br>NO  | LE S        | SIZE                 | 0.5m           | x1.5n                             | n                        |                                                     | LOGGED BY FH                                           |                             | CHECKED BY KB                  |  |
| Method    | Water       | RL<br>(m)            | Depth<br>(m)   | Graphic Log                       | Classification<br>Symbol | Material Descriptio                                 | n                                                      | Samples<br>Tests<br>Remarks | Additional Observations        |  |
|           |             |                      |                | <u>, 17</u> . 77 17<br>17 . 77 17 |                          | TOPSOIL: Loose, dark grey, silty sand with root     | ets                                                    |                             |                                |  |
|           | tered       |                      | _              |                                   | GPS                      | SANDY GRAVEL: Medium dense, fine to mediu           | n grained, grey, with silt, dry                        |                             |                                |  |
|           | Encoun      |                      | _              |                                   | GP-GC                    | GRAVELLY SAND with CLAY: Very dense, fine grey, dry | to coarse, yellowish brown &                           |                             |                                |  |
|           | Not         |                      | 0.5            |                                   |                          |                                                     |                                                        |                             |                                |  |
|           |             |                      | -              |                                   |                          |                                                     |                                                        |                             |                                |  |
|           |             |                      |                |                                   |                          | REFUSAL<br>Borehole TH36 terminated at 0.7m         |                                                        |                             |                                |  |
|           |             |                      | _              |                                   |                          |                                                     |                                                        |                             |                                |  |
|           |             |                      | 1 <u>.0</u>    |                                   |                          |                                                     |                                                        |                             |                                |  |
|           |             |                      | _              |                                   |                          |                                                     |                                                        |                             |                                |  |
|           |             |                      | _              |                                   |                          |                                                     |                                                        |                             |                                |  |
|           |             |                      | _              |                                   |                          |                                                     |                                                        |                             |                                |  |
|           |             |                      |                |                                   |                          |                                                     |                                                        |                             |                                |  |
|           |             |                      | _              |                                   |                          |                                                     |                                                        |                             |                                |  |
|           |             |                      | _              |                                   |                          |                                                     |                                                        |                             |                                |  |
|           |             |                      | _              |                                   |                          |                                                     |                                                        |                             |                                |  |
|           |             |                      | 20             |                                   |                          |                                                     |                                                        |                             |                                |  |
|           |             |                      |                |                                   |                          |                                                     |                                                        |                             |                                |  |
|           |             |                      | _              |                                   |                          |                                                     |                                                        |                             |                                |  |
|           |             |                      | _              |                                   |                          |                                                     |                                                        |                             |                                |  |
|           |             |                      |                |                                   |                          |                                                     |                                                        |                             |                                |  |

| E      | 3               | G             | Brow                                   | /n Ge            | otechr                   | nical                                               |                                  | BOREHO                               | DLE NUMBER TH37<br>PAGE 1 OF 1 |
|--------|-----------------|---------------|----------------------------------------|------------------|--------------------------|-----------------------------------------------------|----------------------------------|--------------------------------------|--------------------------------|
| CL     | IEN             | <b>T</b> _ Ta | llangat                                | ta Be            | ef Pty                   | Ltd                                                 | PROJECT NAME LOTS                | 50 and M1456                         | 6                              |
| PR     | OJE             |               |                                        | ₹ <u>20</u>      | 0049                     |                                                     |                                  | IUCHEA                               |                                |
| DA     | TE S            | STAR<br>NG C  |                                        | 21/10            | /20<br>R                 | <b>COMPLETED</b> <u>21/10/20</u>                    | R.L. SURFACE<br>SLOPE 90°        |                                      | DATUM<br>BEARING               |
| EQ     | UIPI            | MENT          | 5 tor                                  | nne e            | xcava                    | tor                                                 | HOLE LOCATION 405588             | 6504333                              |                                |
| но     | DLE S           | SIZE          | 0.5m                                   | <u>(1.5m</u>     | 1                        |                                                     | LOGGED BY FH                     |                                      | CHECKED BY KB                  |
| NO     | DTES            | 5 <u> </u>    |                                        |                  |                          |                                                     |                                  |                                      |                                |
| Method | Water           | RL<br>(m)     | Depth<br>(m)                           | Graphic Log      | Classification<br>Symbol | Material Descript                                   | ion                              | Samples<br>Tests<br>Remarks          | Additional Observations        |
|        |                 |               |                                        | <u>x1 /y</u><br> |                          | TOPSOIL: Loose, dark grey, silty sand with roo      | tlets                            |                                      |                                |
|        |                 |               |                                        |                  | GPS                      | SANDY GRAVEL: Medium dense, fine to mediu           | um grained, grey, with silt, dry |                                      |                                |
|        | Not Encountered |               |                                        |                  | GP-GC                    | GRAVELLY SAND with CLAY: Very dense, fine grey, dry | to coarse, yellowish brown &     |                                      |                                |
| 7/70   |                 |               | 1. <u>5</u>                            |                  |                          | REFLISAI                                            |                                  | LL=31<br>PL=14<br>Fines=21%<br>LS=6% | ·                              |
|        |                 |               | -<br>2 <u>.0</u><br>-<br>-<br>-<br>2.5 |                  |                          | Borehole TH37 terminated at 1.6m                    |                                  |                                      |                                |

|          | 3        | G                            | Brov                | wn Ge                           | eotech                   | nical                                               | B                                                      | BOREHC                      | DLE NUMBER TH38<br>PAGE 1 OF 1 |  |
|----------|----------|------------------------------|---------------------|---------------------------------|--------------------------|-----------------------------------------------------|--------------------------------------------------------|-----------------------------|--------------------------------|--|
| CL<br>PR |          | Γ <u>Τ</u> α<br><b>CT ΝΙ</b> | llanga<br>JMBE      | itta Be<br><b>R</b> _2(         | eef Pty<br>0049          | / Ltd                                               | PROJECT NAME LOTS 50 and M1456 PROJECT LOCATION MUCHEA |                             |                                |  |
| DA<br>DR | TE S     | STAR                         | red _<br>Ontr       | 21/10<br>АСТО                   | )/20<br>PR               | <b>COMPLETED</b> <u>21/10/20</u>                    | R.L. SURFACE           SLOPE         90°               |                             | DATUM<br>BEARING               |  |
| EQ<br>HC | UIPI     | MENT                         | <u>5 to</u><br>0.5m | nne e<br>x1.5n                  | excava                   | tor                                                 | HOLE LOCATION     405777       LOGGED BY     FH        | 6504329                     | CHECKED BY KB                  |  |
| NO       | TES      |                              |                     |                                 |                          |                                                     |                                                        |                             |                                |  |
| Method   | Water    | RL<br>(m)                    | Depth<br>(m)        | Graphic Log                     | Classification<br>Symbol | Material Descript                                   | on                                                     | Samples<br>Tests<br>Remarks | Additional Observations        |  |
|          |          |                              |                     | <u>x 1, x</u><br>1, <u>x 1,</u> |                          | TOPSOIL: Loose, dark grey, silty sand with roo      | llets                                                  |                             |                                |  |
|          |          |                              |                     |                                 | GPS                      | SANDY GRAVEL: Medium dense, fine to mediu           | ım grained, grey, with silt, dry                       |                             |                                |  |
|          | untered  |                              |                     |                                 |                          |                                                     |                                                        |                             |                                |  |
|          | lot Enco |                              | _                   |                                 |                          |                                                     |                                                        |                             |                                |  |
|          |          |                              | 0 <u>.5</u>         |                                 | GP-GC                    | gRAVELLY SAND with CLAY: Very dense, fine grey, dry | to coarse, yellowish brown &                           |                             |                                |  |
|          |          |                              | _                   |                                 |                          |                                                     |                                                        |                             |                                |  |
|          |          |                              |                     | •                               |                          | REFUSAL                                             |                                                        |                             |                                |  |
|          |          |                              | _                   |                                 |                          | Borehole 1H38 terminated at 0.7m                    |                                                        |                             |                                |  |
|          |          |                              | -                   |                                 |                          |                                                     |                                                        |                             |                                |  |
|          |          |                              | 1 <u>.0</u>         |                                 |                          |                                                     |                                                        |                             |                                |  |
|          |          |                              | _                   |                                 |                          |                                                     |                                                        |                             |                                |  |
|          |          |                              | _                   |                                 |                          |                                                     |                                                        |                             |                                |  |
|          |          |                              | _                   |                                 |                          |                                                     |                                                        |                             |                                |  |
|          |          |                              | 1 <u>.5</u>         |                                 |                          |                                                     |                                                        |                             |                                |  |
|          |          |                              | _                   |                                 |                          |                                                     |                                                        |                             |                                |  |
|          |          |                              | _                   |                                 |                          |                                                     |                                                        |                             |                                |  |
|          |          |                              | _                   |                                 |                          |                                                     |                                                        |                             |                                |  |
|          |          |                              | -                   |                                 |                          |                                                     |                                                        |                             |                                |  |
|          |          |                              | 2 <u>.0</u>         |                                 |                          |                                                     |                                                        |                             |                                |  |
|          |          |                              | -                   |                                 |                          |                                                     |                                                        |                             |                                |  |
|          |          |                              | -                   |                                 |                          |                                                     |                                                        |                             |                                |  |
|          |          |                              |                     |                                 |                          |                                                     |                                                        |                             |                                |  |
|          |          |                              | 2.5                 |                                 |                          |                                                     |                                                        |                             |                                |  |

| E           | 3(              | G                    | Brov                                                    | wn Ge                  | otechr                   | nical                                                                                                                                                   | B                                                               | BOREHO                      | DLE NUMBER TH39<br>PAGE 1 OF 1 |  |
|-------------|-----------------|----------------------|---------------------------------------------------------|------------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------|--------------------------------|--|
| CLII<br>PRC | ENT<br>DJE      | . <u>Ta</u><br>CT NI | llanga<br>UMBE                                          | tta Be<br><b>R</b> _20 | ef Pty                   | Ltd                                                                                                                                                     | PROJECT NAME _LOTS 50 and M1456 PROJECT LOCATION _MUCHEA        |                             |                                |  |
| DA1<br>DRI  | re s<br>LLII    | STAR                 | TED _<br>ONTR                                           | 21/10<br>АСТО          | /20<br>R                 | <b>COMPLETED</b> <u>21/10/20</u>                                                                                                                        | R.L. SURFACE<br>SLOPE _90°                                      |                             | DATUM<br>BEARING               |  |
| EQU<br>HOI  | JIPN<br>LE S    | MENT                 | <u>5 tc</u><br>0.5m                                     | nne e<br>x1.5m         | xcava<br>1               | tor                                                                                                                                                     | HOLE LOCATION 406096                                            | 6504327                     | CHECKED BY KB                  |  |
| Method      | Water           | RL<br>(m)            | Depth<br>(m)                                            | Graphic Log            | Classification<br>Symbol | Material Description                                                                                                                                    | on                                                              | Samples<br>Tests<br>Remarks | Additional Observations        |  |
|             | Not Encountered |                      | -                                                       |                        | GPS<br>GP-GC             | TOPSOIL: Loose, dark grey, silty sand with root<br>SANDY GRAVEL: Dense, fine to medium graine<br>GRAVELLY SAND with CLAY: Very dense, fine<br>grey, dry | ets<br>ed, grey, with silt, dry<br>to coarse, yellowish brown & |                             |                                |  |
|             |                 |                      | 0.5<br><br><br>1.0<br><br>1.5<br><br><br>2.0<br><br>2.5 | <u>∘</u>               |                          | REFUSAL<br>Borehole TH39 terminated at 0.5m                                                                                                             |                                                                 |                             |                                |  |

|        | 3              | G         | Brov                  | wn Ge                | otechr                   | nical                                                                                   | B                                                       | BOREHO                      | DLE NUMBER TH40<br>PAGE 1 OF 1 |
|--------|----------------|-----------|-----------------------|----------------------|--------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------|--------------------------------|
| CL     |                | Ta        | llanga                | tta Be               | ef Pty                   | Ltd                                                                                     | PROJECT NAME LOTS                                       | 50 and M1456                | 3                              |
| PR     | OJE            |           | JMBE                  | R _20                | 0049                     |                                                                                         | PROJECT LOCATIONML                                      | JCHEA                       |                                |
|        | TE S           |           |                       | 21/10                | )/20<br>P                | COMPLETED                                                                               |                                                         |                             | DATUM                          |
| EQ     | UIPI           |           | 5 to                  | nne e                | excava                   | tor                                                                                     | HOLE LOCATION 406357                                    | 6504220                     | BEARING                        |
| но     | LE S           | SIZE      | 0.5m                  | x1.5n                | 1                        |                                                                                         | LOGGED BY _FH                                           |                             | CHECKED BY KB                  |
| NC     | TES            |           |                       |                      |                          | 1                                                                                       | I                                                       |                             |                                |
| Method | Water          | RL<br>(m) | Depth<br>(m)          | Graphic Log          | Classification<br>Symbol | Material Descriptio                                                                     | n                                                       | Samples<br>Tests<br>Remarks | Additional Observations        |
|        |                |           |                       | <u>x 1/</u><br>1/ 1/ |                          | TOPSOIL: Loose, dark grey, silty sand with root                                         | ets                                                     |                             |                                |
|        | ot Encountered |           | _<br>_<br>0 <u>.5</u> |                      | GPS<br>GP-GC             | SANDY GRAVEL: Dense, fine to medium graine<br>GRAVELLY SAND with CLAY: Very dense, fine | d, grey, with silt, dry<br>to coarse, yellowish brown & |                             |                                |
|        | No             |           | _<br>_<br>            |                      |                          | grey, dry                                                                               |                                                         |                             |                                |
|        |                |           | _                     |                      |                          | REFUSAL<br>Borehole TH40 terminated at 1m                                               |                                                         |                             |                                |
|        |                |           | _                     |                      |                          |                                                                                         |                                                         |                             |                                |
|        |                |           | 1 <u>.5</u>           |                      |                          |                                                                                         |                                                         |                             |                                |
|        |                |           | -                     |                      |                          |                                                                                         |                                                         |                             |                                |
|        |                |           | _                     |                      |                          |                                                                                         |                                                         |                             |                                |
|        |                |           | 2.0                   |                      |                          |                                                                                         |                                                         |                             |                                |
|        |                |           | _                     |                      |                          |                                                                                         |                                                         |                             |                                |
|        |                |           | _                     |                      |                          |                                                                                         |                                                         |                             |                                |
|        |                |           | _<br>2.5              |                      |                          |                                                                                         |                                                         |                             |                                |

| E                                                             | 3                       | G                            | Brown                                   | Geotech                               | nical                                                                                                                                                                            |                                                                 |                                                                | B      | OREHO                       | DLE NUMBER TH41<br>PAGE 1 OF 1     |
|---------------------------------------------------------------|-------------------------|------------------------------|-----------------------------------------|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------|--------|-----------------------------|------------------------------------|
| CL                                                            |                         | Т <u>Та</u><br>СТ N          | llangatta<br>UMBER                      | Beef Pty<br>20049                     | / Ltd                                                                                                                                                                            |                                                                 | PROJECT NAME                                                   | LOTS 5 | 0 and M1456<br>JCHEA        | 3                                  |
| DA<br>DR<br>EC<br>HC                                          | TE \$<br>SILLI<br>SUIPI | STAR<br>NG C<br>MENT<br>SIZE | TED _21,<br>ONTRAC<br>5 tonn<br>0.5mx1. | 10/20<br><b>FOR</b><br>e excava<br>5m | ator                                                                                                                                                                             | /10/20                                                          | R.L. SURFACE<br>SLOPE _90°<br>HOLE LOCATION _<br>LOGGED BY _FH | 406108 | 6504220                     | DATUM<br>BEARING<br>CHECKED BY _KB |
| Method                                                        | Water                   | RL (m)                       | Depth<br>(m)                            | Classification<br>Symbol              | M                                                                                                                                                                                | Material Descriptio                                             | n                                                              |        | Samples<br>Tests<br>Remarks | Additional Observations            |
| BOREHOLE/ TEST PIT MUCHAE.GPJ GINT STD AUSTRALIA.GDT 15/12/20 | Not Encountered         |                              |                                         |                                       | TOPSOIL: Loose, dark grey, silt         SANDY GRAVEL: Dense, fine t         GRAVELLY SAND with CLAY: 1         grey, dry         REFUSAL         Borehole TH41 terminated at 1.1 | Ity sand with rootle<br>to medium grained<br>Very dense, fine t | tts<br>I, grey, with silt, dry                                 | wn &   |                             |                                    |

| E                                                            | 3                                | G                            | Brown G                                                                                                                               | eotech                           | nical                                                                                   | E                                                                    | BOREHO                      | DLE NUMBER TH42<br>PAGE 1 OF 1     |
|--------------------------------------------------------------|----------------------------------|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------|------------------------------------|
| CL<br>PR                                                     | IEN<br>ROJE                      | T <u>Ta</u><br>CT N          | 」<br>Illangatta B<br>UMBER _2                                                                                                         | eef Pty<br>20049                 | / Ltd                                                                                   | PROJECT NAMES                                                        | 50 and M1456<br>UCHEA       | 3                                  |
| DA<br>DF<br>EC<br>HC                                         | ATE S<br>RILLI<br>QUIPI<br>DLE S | STAR<br>NG C<br>MENT<br>SIZE | TED _21/1<br>ONTRACT(<br>5 tonne<br>0.5mx1.5                                                                                          | 0/20<br><b>DR</b><br>excava<br>m | completed _21/10/20                                                                     | R.L. SURFACE<br>SLOPE _90°<br>HOLE LOCATION _405842<br>LOGGED BY _FH | 6504214                     | DATUM<br>BEARING<br>CHECKED BY _KB |
| Method                                                       | Water                            | 8<br>RL<br>(m)               | Graphic Log                                                                                                                           | Classification<br>Symbol         | Material Descr                                                                          | iption                                                               | Samples<br>Tests<br>Remarks | Additional Observations            |
|                                                              | Not Encountered                  |                              |                                                                                                                                       | GPS GPS GPS                      | TOPSOIL: Loose, dark grey, silty sand with r<br>SANDY GRAVEL: Dense, fine to medium gra | ine to coarse, yellowish brown &                                     |                             |                                    |
| BOREHOLE/TEST PIT MUCHAE.GPJ GINT STD AUSTRALIA.GDT 15/12/20 |                                  |                              | 1. <u>5</u><br>-<br>-<br>-<br>-<br>2.0<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 8                                | REFUSAL<br>Borehole TH42 terminated at 1.3m                                             |                                                                      |                             |                                    |

| F      | 3               | G         | Brov                                                               | wn Ge         | eotechr                  | nical                                               | B                                 | BOREH                       | DLE NUMBER TH43<br>PAGE 1 OF 1 |
|--------|-----------------|-----------|--------------------------------------------------------------------|---------------|--------------------------|-----------------------------------------------------|-----------------------------------|-----------------------------|--------------------------------|
| CL     | IENT            | Г_Та      | llanga                                                             | tta Be        | eef Pty                  | Ltd                                                 | PROJECT NAME LOTS                 | 50 and M1456                | 6                              |
| PR     | OJE             |           | JMBE                                                               | <b>R</b> _2   | 0049                     |                                                     | PROJECT LOCATION                  | JCHEA                       |                                |
| DA     | TE S            |           |                                                                    | 21/10         | )/20                     | COMPLETED                                           |                                   |                             |                                |
| EQ     | UIPI            |           | 5 to                                                               | nne e         | excava                   | tor                                                 | SLOPE<br>HOLE LOCATION 405652     | 6504213                     | BEARING                        |
| но     | LES             | SIZE      | 0.5m                                                               | x1.5n         | 1                        |                                                     | LOGGED BY FH                      |                             | CHECKED BY KB                  |
| NC     | TES             | ;         |                                                                    |               | 1                        | 1                                                   |                                   |                             |                                |
| Method | Water           | RL<br>(m) | Depth<br>(m)                                                       | Graphic Log   | Classification<br>Symbol | Material Desc                                       | ription                           | Samples<br>Tests<br>Remarks | Additional Observations        |
|        |                 |           |                                                                    | <u>x 1/</u> x |                          | TOPSOIL: Loose, dark grey, silty sand with r        | rootlets                          |                             |                                |
|        |                 |           | _                                                                  |               | GPS                      | SANDY GRAVEL: Dense, fine to medium gr              | ained, grey, with silt, dry       |                             |                                |
|        | Not Encountered |           | -<br>-<br>0 <u>.5</u><br>-<br>1 <u>.0</u><br>-<br>1 <u>.5</u><br>- |               | GP-GC                    | GRAVELLY SAND with CLAY: Very dense, 1<br>grey, dry | fine to coarse, yellowish brown & |                             |                                |
|        |                 |           | _<br>2 <u>.0</u>                                                   |               |                          |                                                     |                                   |                             |                                |
|        |                 |           |                                                                    |               |                          |                                                     |                                   |                             |                                |

# **APPENDIX B**



### Perth Sand Penetrometer Test Plots

| Depth (mm) | Blow Counts |              | Perth | Sar | nd Pe | net | rom | eter | Res | ults | 5 - T | est ( | )5 |    |    |      |      |   | Job Name: | Lot 50 &   |
|------------|-------------|--------------|-------|-----|-------|-----|-----|------|-----|------|-------|-------|----|----|----|------|------|---|-----------|------------|
| 300        | 16          |              |       |     |       |     |     | BI   | ow  | Cou  | nts   |       |    |    |    |      |      |   |           | M1456      |
| 600        | 16          | 0            | ) 1   | 2   | 3     | 4   | 5   | 6    | 7   | 8    | 9     | 10    | 11 | 12 | 13 | 14 1 | 5 16 | 6 |           | Muchae     |
| 900        |             | 300          |       |     |       |     |     |      | 1   |      |       |       |    |    |    |      |      |   | Job No:   | 20049      |
| 1200       |             | 900          |       |     |       |     |     |      |     |      |       |       |    |    | Τ  |      |      |   | Date:     | 20/11/2020 |
| 1500       |             | Ê 1200       |       |     |       |     |     |      |     |      |       |       |    |    |    |      |      |   | Location: | TH11       |
| 1800       |             | 변 1500 년     |       |     |       |     |     |      |     |      |       |       |    |    |    |      |      |   |           |            |
| 2100       |             | <b>1800</b>  |       |     |       |     |     |      |     |      |       |       |    |    |    |      |      |   |           |            |
| 2400       |             | 2100<br>2400 |       |     |       |     |     |      |     |      |       |       |    |    |    |      |      |   |           |            |
| 2700       |             | 2700         |       |     |       |     |     |      |     |      |       |       |    |    |    |      |      |   |           |            |
| 3000       |             | 3000         |       |     |       |     |     |      |     |      |       |       |    |    |    |      |      |   |           |            |

| Depth (mm) | Blow Counts |                                | Perth | San | d Pe | netro | omet | ter R | esu   | lts - | Tes | t 06 |      |      |     |      | Job Name: | Lot 50 &   |
|------------|-------------|--------------------------------|-------|-----|------|-------|------|-------|-------|-------|-----|------|------|------|-----|------|-----------|------------|
| 300        | 7           |                                |       |     |      |       |      | Blow  | / Coi | unts  |     |      |      |      |     |      |           | M1456      |
| 600        | 7           |                                | ) 1   | 2   | 3    | 4 5   | 56   | 7     | 8     | 9     | 10  | 11   | 12 1 | 13 1 | 4 1 | 5 16 |           | Muchae     |
| 900        | 8           | 300<br>600                     |       |     |      |       |      |       |       |       |     |      |      |      |     |      | Job No:   | 20049      |
| 1200       | 8           | 900                            |       |     |      |       |      |       |       |       |     |      |      |      |     |      | Date:     | 20/11/2020 |
| 1500       |             | Ê 1200                         |       |     |      |       |      |       | =     |       |     |      |      |      |     |      | Location: | TH14       |
| 1800       |             | 5 <sub>1500</sub>              |       |     |      |       |      |       |       |       |     |      |      |      |     |      |           |            |
| 2100       |             | <b>a</b> 1800<br><b>a</b> 2100 |       |     |      |       |      |       |       |       |     |      |      |      |     |      |           |            |
| 2400       |             | 2400                           |       |     |      |       |      |       |       |       |     |      |      |      |     |      |           |            |
| 2700       |             | 2700                           |       |     |      |       |      |       |       |       |     |      |      |      |     |      |           |            |
| 3000       |             | 3000                           |       |     |      |       |      |       |       |       |     |      |      |      |     |      |           |            |

| Depth (mm) | Blow Counts |                                | Peri | th Sa | nd l | Pen | etron | nete | r Re | esu | lts - | Tes | st 07 |    |    |      |       | Job Name: | Lot 50 &   |
|------------|-------------|--------------------------------|------|-------|------|-----|-------|------|------|-----|-------|-----|-------|----|----|------|-------|-----------|------------|
| 300        | 6           |                                | _    |       | _    |     | _     | В    | low  | Cou | ints  |     |       |    |    |      |       |           | M1456      |
| 600        | 7           | (                              | 0 ·  | 1 2   | 3    | 4   | 5     | 6    | 7    | 8   | 9     | 10  | 11    | 12 | 13 | 14 1 | 15 16 |           | Muchae     |
| 900        | 8           | 300<br>600                     |      |       |      |     |       |      |      |     |       |     |       |    |    |      |       | Job No:   | 20049      |
| 1200       | 15          | 900                            |      |       |      |     |       |      |      |     |       |     |       |    |    |      |       | Date:     | 20/11/2020 |
| 1500       |             | <u>ਵ</u> ੇ <sup>1200</sup>     |      |       |      |     |       | _    |      |     |       |     | _     | _  |    |      |       | Location: | TH17       |
| 1800       |             | ម្ <sub>1500</sub>             |      |       |      |     |       |      |      |     |       |     |       |    |    |      |       |           |            |
| 2100       |             | <b>0</b> 1800<br><b>0</b> 2100 |      |       |      |     |       |      |      |     |       |     |       |    |    |      |       |           |            |
| 2400       |             | 2400                           |      |       |      |     |       |      |      |     |       |     |       |    |    |      |       |           |            |
| 2700       |             | 2700                           |      |       |      |     |       |      |      |     |       |     |       |    |    |      |       |           |            |
| 3000       |             | 3000                           |      |       |      |     |       |      |      |     |       |     |       |    |    |      |       |           |            |

| Depth (mm) | Blow Counts |                                | Per | rth S | San | d Pe | ene | tror | nete | er Re | esı | ılts · | - Tes | st 08 | 3  |    |    |       |   | Job Name: | Lot 50 &   |
|------------|-------------|--------------------------------|-----|-------|-----|------|-----|------|------|-------|-----|--------|-------|-------|----|----|----|-------|---|-----------|------------|
| 300        | 7           |                                |     |       |     |      |     |      | E    | Blow  | Co  | unts   |       |       |    |    |    |       |   |           | M1456      |
| 600        | 7           |                                |     | 1     | 2   | 3    | 4   | 5    | 6    | 7     | 8   | 9      | 10    | 11    | 12 | 13 | 14 | 15 10 | 6 |           | Muchae     |
| 900        | 8           | 600                            |     |       |     |      |     |      |      |       |     |        |       |       |    |    |    |       |   | Job No:   | 20049      |
| 1200       | 8           | 900                            |     |       |     |      |     |      |      |       |     |        |       |       |    |    |    |       |   | Date:     | 20/11/2020 |
| 1500       |             | Ê 1200                         |     |       |     |      | +   | _    | _    |       |     |        |       |       |    |    |    |       |   | Location: | TH21       |
| 1800       |             | ម្ <sub>1500</sub>             |     |       |     |      |     |      |      |       |     |        |       |       |    |    |    |       |   |           |            |
| 2100       |             | <b>a</b> 1800<br><b>a</b> 2100 |     |       |     |      |     |      |      |       |     |        |       |       |    |    |    |       |   |           |            |
| 2400       |             | 2400                           |     |       |     |      |     |      |      |       |     |        |       |       |    |    |    |       |   |           |            |
| 2700       |             | 2700                           | 1   |       |     |      |     |      |      |       |     |        |       |       |    |    |    |       |   |           |            |
| 3000       |             | 3000                           |     |       |     |      |     |      |      |       |     |        |       |       |    |    |    |       |   |           |            |



| Depth (mm) | Blow Counts | Perth Sand Penetrometer Results - Test 10 | Job Name: Lot 50 &   |
|------------|-------------|-------------------------------------------|----------------------|
| 300        | 6           | Blow Counts                               | M1456                |
| 600        | 7           |                                           | Muchae               |
| 900        | 13          |                                           | <b>Job No:</b> 20049 |
| 1200       | 16          | 900                                       | Date: 20/11/2020     |
| 1500       |             |                                           | Location: TH28       |
| 1800       |             | 5 1500<br>f                               |                      |
| 2100       |             |                                           |                      |
| 2400       |             | 2400                                      |                      |
| 2700       |             | 2700                                      |                      |
| 3000       |             | 3000                                      |                      |

| Depth (mm) | Blow Counts |                            | Pertl | h Sai | nd P | enetr | ome | ter R | lesu  | lts - | Tes | t 11 |      |      |       | Job Name: | Lot 50 &   |
|------------|-------------|----------------------------|-------|-------|------|-------|-----|-------|-------|-------|-----|------|------|------|-------|-----------|------------|
| 300        | 5           |                            |       | _     | _    |       |     | Blow  | v Cou | nts   |     |      |      |      |       |           | M1456      |
| 600        | 8           | -                          | ) 1   | 2     | 3    | 4     | 56  | 5 7   | 8     | 9     | 10  | 11   | 12 1 | 3 14 | 15 16 |           | Muchae     |
| 900        | 16          | 300<br>600                 |       |       |      |       |     |       |       |       |     |      |      |      |       | Job No:   | 20049      |
| 1200       | 16          | 900                        |       |       |      |       |     |       |       |       |     |      |      |      |       | Date:     | 20/11/2020 |
| 1500       |             | <u>ਵ</u> ੇ <sup>1200</sup> | ╞═┿   |       |      |       |     |       |       |       | -   | -    |      |      |       | Location: | TH32       |
| 1800       |             | <u>ម</u><br>1500           |       |       |      |       |     |       |       |       |     |      |      |      |       |           |            |
| 2100       |             | <b>0</b> 1800              |       |       |      |       |     |       |       |       |     |      |      |      |       |           |            |
| 2400       |             | 2400                       |       |       |      |       |     |       |       |       |     |      |      |      |       |           |            |
| 2700       |             | 2700                       |       |       |      |       |     |       |       |       |     |      |      |      |       |           |            |
| 3000       |             | 3000                       |       |       |      |       |     |       |       |       |     |      |      |      |       |           |            |

| Depth (mm) | Blow Counts |                                | Per | th Sa | nd F | Pene | etron | neter | r Re  | sult | s - T | Test | 12   |     |      |    |    | Job Name: | Lot 50 &   |
|------------|-------------|--------------------------------|-----|-------|------|------|-------|-------|-------|------|-------|------|------|-----|------|----|----|-----------|------------|
| 300        | 5           |                                |     |       |      | •    |       | BI    | low C | Coun | ts    |      |      |     |      |    |    |           | M1456      |
| 600        | 8           |                                | 0   | 1 2   | 3    | 4    | 5     | 6     | 7     | 8    | 9     | 10   | 11 1 | 2 1 | 3 14 | 15 | 16 |           | Muchae     |
| 900        | 16          | 300<br>600                     |     |       |      |      |       |       |       |      |       |      |      |     |      |    |    | Job No:   | 20049      |
| 1200       |             | 900                            |     |       |      |      |       |       |       |      |       |      |      |     |      |    |    | Date:     | 20/11/2020 |
| 1500       |             | Ê 1200                         | ]   |       |      |      |       |       |       |      |       |      |      |     |      |    |    | Location: | TH38       |
| 1800       |             | 년 <sub>1500</sub><br>도         | -   |       |      |      |       |       |       |      |       |      |      |     |      |    |    |           |            |
| 2100       |             | <b>a</b> 1800<br><b>a</b> 2100 | -   |       |      |      |       |       |       |      |       |      |      |     |      |    |    |           |            |
| 2400       |             | 2400                           | 1   |       |      |      |       |       |       |      |       |      |      |     |      |    |    |           |            |
| 2700       |             | 2700                           | ]   |       |      |      |       |       |       |      |       |      |      |     |      |    |    |           |            |
| 3000       |             | 3000                           |     |       |      |      |       |       |       |      |       |      |      |     |      |    |    |           |            |



| Depth (mm) | Blow Counts |                                | Pert | h Sa | and F | Pene | etron | neter | r Res | sult | s - T | est  | 14 |      |    |      |      | Job Name: | Lot 50 &   |
|------------|-------------|--------------------------------|------|------|-------|------|-------|-------|-------|------|-------|------|----|------|----|------|------|-----------|------------|
| 300        | 10          |                                |      |      | _     |      | _     | B     | low C | oun  | nts   |      |    |      |    |      |      |           | M1456      |
| 600        | 15          |                                |      | 2    | 3     | 4    | 5     | 6     | 7     | 8    | 9 -   | 10   | 11 | 12 1 | 31 | 4 15 | 5 16 |           | Muchae     |
| 900        | 16          | 300<br>600                     |      |      |       |      |       |       |       |      |       |      |    |      |    |      |      | Job No:   | 20049      |
| 1200       |             | 900                            |      |      |       |      |       |       |       |      |       | <br> |    |      |    |      |      | Date:     | 20/11/2020 |
| 1500       |             | ੰ <u>ਵ</u> ੇ 1200              |      |      |       |      |       |       |       |      |       |      |    |      |    |      |      | Location: | TH43       |
| 1800       |             | 은 1500<br>두                    |      |      |       |      |       |       |       |      |       |      |    |      |    |      |      |           |            |
| 2100       |             | <b>a</b> 1800<br><b>a</b> 2100 |      |      |       |      |       |       |       |      |       |      |    |      |    |      |      |           |            |
| 2400       |             | 2400                           |      |      |       |      |       |       |       |      |       |      |    |      |    |      |      |           |            |
| 2700       |             | 2700                           |      |      |       |      |       |       |       |      |       |      |    |      |    |      |      |           |            |
| 3000       |             | 3000                           |      |      |       |      |       |       |       |      |       |      |    |      |    |      |      |           |            |

| Depth (mm) | Blow Counts |                        | Pe | rth | Sar | nd P | ene | tror | nete | er Re | esu | lts - | Tes | st 15 |    |    |    |    |        | Job Name: |
|------------|-------------|------------------------|----|-----|-----|------|-----|------|------|-------|-----|-------|-----|-------|----|----|----|----|--------|-----------|
| 300        |             |                        |    |     |     |      |     |      | E    | Blow  | Cou | ints  |     |       |    |    |    |    |        |           |
| 600        |             |                        | 0  | 1   | 2   | 3    | 4   | 5    | 6    | 7     | 8   | 9     | 10  | 11    | 12 | 13 | 14 | 15 | 16<br> |           |
| 900        |             | 300<br>600             | -  |     |     |      |     |      |      |       |     |       |     |       |    |    |    |    |        | Job No:   |
| 1200       |             | 900                    |    |     |     |      |     |      |      |       |     |       |     |       |    |    |    |    |        | Date:     |
| 1500       |             | Ê 1200                 | 1  |     |     |      |     |      |      |       |     |       |     |       |    |    |    |    |        | Location: |
| 1800       |             | ຍ <sub>1500</sub><br>ສ |    |     |     |      |     |      |      |       |     |       |     |       |    |    |    |    |        |           |
| 2100       |             | a 1800<br>a 2100       |    |     |     |      |     |      |      |       |     |       |     |       |    |    |    |    |        |           |
| 2400       |             | 2400                   |    |     |     |      |     |      |      |       |     |       |     |       |    |    |    |    |        |           |
| 2700       |             | 2700                   | 1  |     |     |      |     |      |      |       |     |       |     |       |    |    |    |    |        |           |
| 3000       |             | 3000                   |    |     |     |      |     |      |      |       |     |       |     |       |    |    |    |    |        |           |

| Depth (mm) | Blow Counts |                                | Pe | rth S | San | d P | ene | tror | nete | er Re | esu | lts - | Tes | st 16 | 5  |    |    |    |    | Job Name: |
|------------|-------------|--------------------------------|----|-------|-----|-----|-----|------|------|-------|-----|-------|-----|-------|----|----|----|----|----|-----------|
| 300        |             |                                |    |       |     |     |     |      | Ē    | Blow  | Cou | nts   |     |       |    |    |    |    |    |           |
| 600        |             |                                | 0  | 1     | 2   | 3   | 4   | 5    | 6    | 7     | 8   | 9     | 10  | 11    | 12 | 13 | 14 | 15 | 16 |           |
| 900        |             | 300<br>600                     |    |       |     |     |     |      |      |       |     |       |     |       |    |    |    |    |    | Job No:   |
| 1200       |             | 900                            |    |       |     |     |     |      |      |       |     |       |     |       |    |    |    |    |    | Date:     |
| 1500       |             | Ê 1200                         | 1  |       |     |     |     |      |      |       |     |       |     |       |    |    |    |    |    | Location: |
| 1800       |             | ម្ <sub>1500</sub>             |    |       |     |     |     |      |      |       |     |       |     |       |    |    |    |    |    |           |
| 2100       |             | <b>a</b> 1800<br><b>a</b> 2100 |    |       |     |     |     |      |      |       |     |       |     |       |    |    |    |    |    |           |
| 2400       |             | 2400                           |    |       |     |     |     |      |      |       |     |       |     |       |    |    |    |    |    |           |
| 2700       |             | 2700                           | 1  |       |     |     |     |      |      |       |     |       |     |       |    |    |    |    |    |           |
| 3000       |             | 3000                           |    |       |     |     |     |      |      |       |     |       |     |       |    |    |    |    |    |           |

# **APPENDIX C**



|                       | SOIL       | AGGREGATE          | CONCRETE            | CRUSH         | IING            |
|-----------------------|------------|--------------------|---------------------|---------------|-----------------|
|                       |            | TEST REPO          | DRT - AS 1289.3.6.1 |               |                 |
| Client:               | Brown      | Geotechnical       |                     | Ticket No.    | S1928           |
| Client Address:       | PO Box     | 278 Como, WA, 6952 |                     | Report No.    | WG20/9800_1_PSD |
| Project:              | Tallang    | atta               |                     | Sample No.    | WG20/9800       |
| Location:             | Muchae     | 9                  |                     | Date Sampled: | 20-10-2020      |
| Sample Identification | n: TH1 0.2 | -0.5m              |                     | Date Tested:  | 28-29/10/2020   |

### **TEST RESULTS - Particle Size Distribution of Soil**



Name: Brooke Elliott Date: 30-October-2020

235 Bank Street, Welshpool WA 6106

WORLD RECOGNISED

with ISO/IEC 17025 - Testing

This document shall not be reproduced except in full



AGGREGATE CONCRETE CRUSHING SOIL **TEST REPORT - AS 1289.3.6.1 (% Fines)** Client: **Brown Geotechnical** Ticket No. **S1928 Client Address:** PO Box 278 Como, WA, 6952 Report No. WG20/9801\_1\_%FINES **Project:** WG20/9801 **Tallangatta** Sample No. Muchae Date Sampled: 20-10-2020 Location: TH6 1.5-2.0m Sample Identification: Date Tested: 28-29/10/2020 **TEST RESULTS - Particle Size Distribution of Soil** Sampled by Client, Tested as Received Sampling Method: Sieve Size **Percent Passing** 100 (mm) Sieve (%) 90 80 75.0 37.5 70 -19.0 60 9.5 850 4.75 Passing ( 2.36 1.18 30 0.600 20 0.425 0.300 10 -0.150 0 0.0 0.1 1.0 10.0 100.0 1000.0 0.075 27 Particle Size (mm)

*Comments: Clients request for the % Fines of Material passing 0.075mm only.* 

Approved Signatory:

Retats

Name: Brooke Elliott Date: 30-October-2020

235 Bank Street, Welshpool WA 6106

#### 08 9472 3465

www.wgls.com.au

Accreditation No. 20599 Accredited for compliance

WORLD RECOGNISED WITH ISO/IEC 17025 - Testing

This document shall not be reproduced expect in full



|                        | SUIL   AUGREGATE   CUNCRET             | E   CRUSHIN   |                |
|------------------------|----------------------------------------|---------------|----------------|
|                        | TEST REPORT - AS 1289.3.1.1, 3.2.1, 3. | .3.1 & 3.4.1  |                |
| Client:                | Brown Geotechnical                     | Ticket No.    | S1928          |
| Client Address:        | PO Box 278 Como, WA, 6952              | Report No.    | WG20/9801_1_PI |
| Project:               | Tallangatta                            | Sample No.    | WG20/9801      |
| Location:              | Muchae                                 | Date Sampled: | 20-10-2020     |
| Sample Identification: | TH6 1.5-2.0m                           | Date Tested:  | 29-10-2020     |

## **TEST RESULTS - Consistency Limits (Casagrande)**

| Sampling Method:       | Sampled by Client, Tested as Received |
|------------------------|---------------------------------------|
| History of Sample:     | Oven Dried <50°C                      |
| Method of Preparation: | Dry Sieved                            |

| AS 1289.3.1.1 | Liquid Limit (%)                  | 34              |
|---------------|-----------------------------------|-----------------|
| AS 1289.3.2.1 | Plastic Limit (%)                 | 13              |
| AS 1289.3.3.1 | Plasticity Index (%)              | 21              |
| AS 1289.3.4.1 | Linear Shrinkage (%)              | 6.5             |
| AS 1289.3.4.1 | Length of Mould (mm)              | 250             |
| AS 1289.3.4.1 | <b>Condition of Dry Specimen:</b> | Cracked, Curled |

| Comments:                           |                                                      |
|-------------------------------------|------------------------------------------------------|
| Approved Signatory:                 | Accreditation No. 20599<br>Accredited for compliance |
| Name: Brooke Elliott                | works RECOGNISED with ISO/IEC 17025 - Testing        |
| Date: 02-November-2020              | This document shall not be reproduced except in full |
| 235 Bank Street Welchnool W/A 6106  | 08 9/172 3/165 / MAMAA/ Wals com 211                 |
| 255 Barrk Street, Weishpoor WA 0100 | 00 3472 3403   www.wgis.com.au                       |


| SC                     | DIL   A     | GGREGATE          | CONCRETE           | CRL           | JSHING       |         |
|------------------------|-------------|-------------------|--------------------|---------------|--------------|---------|
|                        | т           | EST REPORT - ASTM | I D2974-14 (Test M | ethod C)      |              |         |
| Client:                | Brown Geot  | echnical          |                    | Ticket No.    | S1           |         |
| Client Address:        | PO Box 278  | Como, WA, 6952    |                    | Report No.    | WG20/ _      | 1_ORG   |
| Project:               | Tallangatta |                   |                    | Sample No.    | WG20/9802-   | 1       |
| Location:              | Muchae      |                   | L                  | Date Sampled  | : 22020      |         |
| Sample Identification: | TH14 0.1m   |                   |                    | Date Tested:  | 2020         |         |
|                        |             | TEST RESULTS      | - Organic Cont     | ent           |              |         |
| Sampling M             | ethod:      |                   | Sampled by C       | lient, Tested | as Received  |         |
| Testing Compl          | eted By:    |                   |                    | кт            |              |         |
| Furnace Temper         | ature (°C): |                   | 4                  | 440           |              |         |
| Sample Number          | Sample      | Identification    | Ash Conter         | nt (%)        | Organic Cont | ent (%) |
| WG20/9802-1            |             | <b>S1</b>         | 94.2               |               | 5.8          |         |
| 0                      |             | 0                 | #DIV/0             | )!            | #DIV/0       | )!      |
| 0                      |             | 0                 | #DIV/0             | )!            | #DIV/0       | )!      |
| 0                      |             | 0                 | #DIV/0             | )!            | #DIV/0       | )!      |
| 0                      |             | 0                 | #DIV/0             | )!            | #DIV/0       | )!      |
| 0                      |             | 0                 | #DIV/0             | )!            | #DIV/0       | )!      |
| 0                      |             | 0                 | #DIV/0             | )!            | #DIV/0       | )!      |
| 0                      |             | 0                 | #DIV/0             | )!            | #DIV/0       | )!      |
| 0                      |             | 0                 | #DIV/0             | )!            | #DIV/0       | )!      |

Comments:



Name: Brooke Elliott Date:30-October-2020

235 Bank Street, Welshpool WA 6106

08 9472 3465

Accreditation No. 20599

This document shall not be reproduced except in full

Accredited for compliance word reconstruction with ISO/IEC 17025 - Testing



|                    | CONCREIL   CF                                                         | RUSHING                                                                                                                             |
|--------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| TEST REPORT -      | AS 1289.3.6.1                                                         |                                                                                                                                     |
| Geotechnical       | Ticket N                                                              | <i>lo.</i> \$1928                                                                                                                   |
| 278 Como, WA, 6952 | Report N                                                              | <i>No.</i> WG20/9802_1_PSD                                                                                                          |
| itta               | Sample                                                                | No. WG20/9802                                                                                                                       |
|                    | Date Sam                                                              | pled: 20-10-2020                                                                                                                    |
| J-1.5m             | Date Tes                                                              | ted: 28-29/10/2020                                                                                                                  |
|                    | TEST REPORT -<br>Geotechnical<br>278 Como, WA, 6952<br>Itta<br>0-1.5m | TEST REPORT - AS 1289.3.6.1<br>Seotechnical Ticket N<br>278 Como, WA, 6952 Report N<br>Itta Sample D<br>Date Sam<br>D-1.5m Date Tes |

### **TEST RESULTS - Particle Size Distribution of Soil**



Approved Signatory:

" Settits

Name: Brooke Elliott Date: 30-October-2020

235 Bank Street, Welshpool WA 6106

### 08 9472 3<u>465</u>

WORLD RECOGNISED

www.wgls.com.au

Accreditation No. 20599 Accredited for compliance with ISO/IEC 17025 - Testing

This document shall not be reproduced except in full



| S                     | SOIL       | AGGREGATE         | CONCRETE            | CRUSH         | ING             |
|-----------------------|------------|-------------------|---------------------|---------------|-----------------|
|                       |            | TEST REPO         | ORT - AS 1289.3.6.1 |               |                 |
| Client:               | Brown Ge   | eotechnical       |                     | Ticket No.    | S1928           |
| Client Address:       | PO Box 2   | 78 Como, WA, 6952 |                     | Report No.    | WG20/9803_1_PSD |
| Project:              | Tallangat  | ta                |                     | Sample No.    | WG20/9803       |
| Location:             | Muchae     |                   |                     | Date Sampled: | 20-10-2020      |
| Sample Identification | :Th19 0.3- | 0.8m              |                     | Date Tested:  | 28-29/10/2020   |
|                       |            |                   |                     |               |                 |

### **TEST RESULTS - Particle Size Distribution of Soil**



Approved Signatory:

ry: Retrits

Name: Brooke Elliott Date: 30-October-2020

235 Bank Street, Welshpool WA 6106

Accreditation No. 20599 Accredited for compliance

WORLD RECOGNISED with ISO/IEC 17025 - Testing

This document shall not be reproduced except in full



AGGREGATE CONCRETE CRUSHING SOIL **TEST REPORT - AS 1289.3.6.1 (% Fines)** Client: **Brown Geotechnical** Ticket No. **S1928 Client Address:** PO Box 278 Como, WA, 6952 Report No. WG20/9804\_1\_%FINES **Project:** WG20/9804 **Tallangatta** Sample No. Muchae Date Sampled: 20-10-2020 Location: TH19 1.0-1.5m Date Tested: Sample Identification: 28-29/10/2020 **TEST RESULTS - Particle Size Distribution of Soil** Sampled by Client, Tested as Received Sampling Method: Sieve Size **Percent Passing** 100 (mm) Sieve (%) 90 80 75.0 37.5 70 -19.0 60 9.5 850 4.75 Passing ( 2.36 1.18 30 0.600 20 0.425 0.300 10 -0.150 0 0.0 0.1 1.0 10.0 100.0 1000.0 0.075 19 Particle Size (mm)

*Comments: Clients request for the % Fines of Material passing 0.075mm only.* 

Approved Signatory:

Retats

Name: Brooke Elliott Date: 02-November-2020

235 Bank Street, Welshpool WA 6106

#### 08 9472 3465

www.wgls.com.au

Accreditation No. 20599 Accredited for compliance

WORLD RECOGNISED WITH ISO/IEC 17025 - Testing

This document shall not be reproduced expect in full



| · · · · · · · · · · · · · · · · · · · | SOIL   AOORLOATL   CONCRETE               | CRUSHIN       | 10             |
|---------------------------------------|-------------------------------------------|---------------|----------------|
|                                       | TEST REPORT - AS 1289.3.1.1, 3.2.1, 3.3.1 | & 3.4.1       |                |
| Client:                               | Brown Geotechnical                        | Ticket No.    | S1928          |
| Client Address:                       | PO Box 278 Como, WA, 6952                 | Report No.    | WG20/9804_1_PI |
| Project:                              | Tallangatta                               | Sample No.    | WG20/9804      |
| Location:                             | Muchae                                    | Date Sampled: | 20-10-2020     |
| Sample Identification:                | TH19 1.0-1.5m                             | Date Tested:  | 29-10-2020     |

### **TEST RESULTS - Consistency Limits (Casagrande)**

| Sampling Method:       | Sampled by Client, Tested as Received |
|------------------------|---------------------------------------|
| History of Sample:     | Oven Dried <50°C                      |
| Method of Preparation: | Dry Sieved                            |

| AS 1289.3.1.1 | Liquid Limit (%)                  | 28  |
|---------------|-----------------------------------|-----|
| AS 1289.3.2.1 | Plastic Limit (%)                 | 14  |
| AS 1289.3.3.1 | Plasticity Index (%)              | 14  |
| AS 1289.3.4.1 | Linear Shrinkage (%)              | 4.0 |
| AS 1289.3.4.1 | Length of Mould (mm)              | 250 |
| AS 1289.3.4.1 | <b>Condition of Dry Specimen:</b> | -   |

| Comments:                          |                                                      |
|------------------------------------|------------------------------------------------------|
| Approved Signatory:                | Accreditation No. 20599<br>Accredited for compliance |
| Name: Brooke Elliott               | WORLD RECOGNISED With ISO/IEC 17025 - Testing        |
| Date: 02-November-2020             | This document shall not be reproduced except in full |
|                                    |                                                      |
| 235 Bank Street, Welshpool WA 6106 | 08 9472 3465   www.wgls.com.au                       |
|                                    |                                                      |



AGGREGATE CONCRETE CRUSHING SOIL **TEST REPORT - AS 1289.3.6.1 (% Fines)** Client: **Brown Geotechnical** Ticket No. **S1928 Client Address:** PO Box 278 Como, WA, 6952 Report No. WG20/9805\_1\_%FINES **Project:** WG20/9805 **Tallangatta** Sample No. Muchae Date Sampled: 20-10-2020 Location: TH21 1.5-1.9m Date Tested: Sample Identification: 28-29/10/2020 **TEST RESULTS - Particle Size Distribution of Soil** Sampled by Client, Tested as Received Sampling Method: Sieve Size **Percent Passing** 100 (mm) Sieve (%) 90 80 75.0 37.5 70 -19.0 60 9.5 850 4.75 Passing ( 2.36 1.18 30 0.600 20 0.425 0.300 10 -0.150 0 0.0 0.1 1.0 10.0 100.0 1000.0 0.075 24 Particle Size (mm)

*Comments: Clients request for the % Fines of Material passing 0.075mm only.* 

Approved Signatory:

Ratis

Name: Brooke Elliott Date: 30-October-2020

235 Bank Street, Welshpool WA 6106

### 08 9472 3465

www.wgls.com.au

Accreditation No. 20599 Accredited for compliance

WORLD RECOGNISED WITH ISO/IEC 17025 - Testing

This document shall not be reproduced expect in full



|                        | SOIL   AUGREGATE   CONCRE           |               | 10             |
|------------------------|-------------------------------------|---------------|----------------|
|                        | TEST REPORT - AS 1289.3.1.1, 3.2.1, | 3.3.1 & 3.4.1 |                |
| Client:                | Brown Geotechnical                  | Ticket No.    | S1928          |
| Client Address:        | PO Box 278 Como, WA, 6952           | Report No.    | WG20/9805_1_PI |
| Project:               | Tallangatta                         | Sample No.    | WG20/9805      |
| Location:              | Muchae                              | Date Sampled: | 20-10-2020     |
| Sample Identification: | TH21 1.5-1.9m                       | Date Tested:  | 29-10-2020     |

## **TEST RESULTS - Consistency Limits (Casagrande)**

| Sampling Method:       | Sampled by Client, Tested as Received |
|------------------------|---------------------------------------|
| History of Sample:     | Oven Dried <50°C                      |
| Method of Preparation: | Dry Sieved                            |

| AS 1289.3.1.1 | Liquid Limit (%)                  | 35      |
|---------------|-----------------------------------|---------|
| AS 1289.3.2.1 | Plastic Limit (%)                 | 16      |
| AS 1289.3.3.1 | Plasticity Index (%)              | 19      |
| AS 1289.3.4.1 | Linear Shrinkage (%)              | 6.0     |
| AS 1289.3.4.1 | Length of Mould (mm)              | 250     |
| AS 1289.3.4.1 | <b>Condition of Dry Specimen:</b> | Cracked |

| Comments:                          |                  |                                                      |
|------------------------------------|------------------|------------------------------------------------------|
| Approved Signatory:                | NATA             | Accreditation No. 20599<br>Accredited for compliance |
| Name: Brooke Elliott               | WORLD RECOGNISED | with ISO/IEC 17025 - Testing                         |
| Date: 02-November-2020             | This docume      | ent shall not be reproduced except in full           |
| 235 Bank Street, Welshpool WA 6106 | 08 9472 3465     | www.wgls.com.au                                      |



| SOIL   AGGREGATE          | CONCRETE   CRUSH                                                                                                           | ING                                                                                                                                                                                          |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TEST REPORT               | - AS 1289.1.1*,3.6.1                                                                                                       |                                                                                                                                                                                              |
| Brown Geotechnical        | Ticket No.                                                                                                                 | S1928                                                                                                                                                                                        |
| PO Box 278 Como, WA, 6952 | Report No.                                                                                                                 | WG20/9806_1_PSD                                                                                                                                                                              |
| Tallangatta               | Sample No.                                                                                                                 | WG20/9806                                                                                                                                                                                    |
| Muchae                    | Date Sampled:                                                                                                              | 20-10-2020                                                                                                                                                                                   |
| a: TH29 0.1-0.5m          | Date Tested:                                                                                                               | 28-10-2020                                                                                                                                                                                   |
|                           | SOIL AGGREGATE TEST REPORT<br>Brown Geotechnical<br>PO Box 278 Como, WA, 6952<br>Tallangatta<br>Muchae<br>:: TH29 0.1-0.5m | SOILAGGREGATECONCRETECRUSHTEST REPORT - AS 1289.1.1*,3.6.1Brown GeotechnicalTicket No.PO Box 278 Como, WA, 6952Report No.TallangattaSample No.MuchaeDate Sampled:b:TH29 0.1-0.5mDate Tested: |

### **TEST RESULTS - Particle Size Distribution of Soil**



Comments: \*AS 1289.1.1- Deviation from standard: Insufficient sample according to test method requirements. NATA accreditation does not cover the performance of this service.

**Approved Signatory:** 

Ratits

Name: Brooke Elliott Date: 30-October-2020

235 Bank Street, Welshpool WA 6106

WORLD RECOGNISED

Accreditation No. 20599 Accredited for compliance with ISO/IEC 17025 - Testing

This document shall not be reproduced except in full



|                        | SUL   AUGREUATE   CUNCRE            |               | 10             |
|------------------------|-------------------------------------|---------------|----------------|
|                        | TEST REPORT - AS 1289.3.1.1, 3.2.1, | 3.3.1 & 3.4.1 |                |
| Client:                | Brown Geotechnical                  | Ticket No.    | S1928          |
| Client Address:        | PO Box 278 Como, WA, 6952           | Report No.    | WG20/9807_1_PI |
| Project:               | Tallangatta                         | Sample No.    | WG20/9807      |
| Location:              | Muchae                              | Date Sampled: | 20-10-2020     |
| Sample Identification: | TH29 0.5-1.1m                       | Date Tested:  | 29-10-2020     |

## **TEST RESULTS - Consistency Limits (Casagrande)**

| Sampling Method:       | Sampled by Client, Tested as Received |
|------------------------|---------------------------------------|
| History of Sample:     | Oven Dried <50°C                      |
| Method of Preparation: | Dry Sieved                            |

| AS 1289.3.1.1 | Liquid Limit (%)                  | 23      |
|---------------|-----------------------------------|---------|
| AS 1289.3.2.1 | Plastic Limit (%)                 | 17      |
| AS 1289.3.3.1 | Plasticity Index (%)              | 6       |
| AS 1289.3.4.1 | Linear Shrinkage (%)              | 2.0     |
| AS 1289.3.4.1 | Length of Mould (mm)              | 250     |
| AS 1289.3.4.1 | <b>Condition of Dry Specimen:</b> | Cracked |

| Comments:                          |                  |                                                      |
|------------------------------------|------------------|------------------------------------------------------|
| Approved Signatory:                | NATA             | Accreditation No. 20599<br>Accredited for compliance |
| Name: Brooke Elliott               | WORLD RECOGNISED | with ISO/IEC 17025 - Testing                         |
| Date: 02-November-2020             | This docume      | ent shall not be reproduced except in full           |
| 235 Bank Street, Welshpool WA 6106 | 08 9472 3465     | www.wgls.com.au                                      |
|                                    |                  |                                                      |



|                    | SOIL   AGGR                | EGATE       | CONCI          | RETE               | CRUSH        | ING           |         |
|--------------------|----------------------------|-------------|----------------|--------------------|--------------|---------------|---------|
|                    | TE                         | ST REPORT   | - AS 1289.3.6. | 1 (% Fines)        |              |               |         |
| Client:            | Brown Geotechn             | ical        |                | Т                  | icket No.    | S1928         |         |
| Client Address:    | PO Box 278 Com             | o, WA, 6952 |                | Re                 | eport No.    | WG20/9808_1   | _%FINES |
| Project:           | Tallangatta                |             |                | Sa                 | imple No.    | WG20/9808     |         |
| Location:          | Muchae                     |             |                | Dat                | e Sampled:   | 20-10-2020    |         |
| Sample Identificat | <i>tion:</i> TH37 1.2-1.6m |             |                | Da                 | te Tested:   | 28-29/10/2020 | )       |
|                    | TEST RESU                  | ILTS - Part | ticle Size D   | istributior        | n of Soil    |               |         |
| Sampli             | ng Method:                 |             | Sampled by     | Client, Tes        | ted as Recei | ived          |         |
| Sieve Size         | Percent Passing            | 100         |                |                    |              |               |         |
| (mm)               | Sieve (%)                  |             |                |                    |              |               |         |
|                    |                            | 90          |                |                    |              |               |         |
| 75.0               |                            | 80          |                |                    |              |               |         |
| 27 г               |                            |             |                |                    |              |               |         |
| 37.5               |                            | 70          |                |                    |              |               |         |
| 19.0               |                            | 60          |                |                    |              |               |         |
| 9.5                |                            |             |                |                    |              |               |         |
| 4.75               |                            | <u>§</u> 50 |                |                    |              |               |         |
| 2 26               |                            |             |                |                    |              |               |         |
| 2.50               |                            |             |                |                    |              |               |         |
| 1.18               |                            | 30          |                |                    |              |               |         |
| 0.600              |                            |             |                |                    |              |               |         |
| 0.425              |                            | 20          |                |                    |              |               |         |
| 0 300              |                            | 10          |                |                    |              |               |         |
| 0.500              |                            |             |                |                    |              |               |         |
| 0.150              |                            | 0           | 0.1            |                    | 40.0         |               |         |
| 0.075              | 21                         | 0.0         | 0.1            | 1.0<br>Particle Si | ize (mm)     | 100.0         | 1000.0  |
|                    |                            |             |                |                    |              |               |         |

Comments: Clients request for the % Fines of Material passing 0.075mm only.

Approved Signatory:

Ratits

Name: Brooke Elliott

Date: 30-October-2020

235 Bank Street, Welshpool WA 6106

### 08 9472 3465

NATA

www.wgls.com.au

Accreditation No. 20599

WORLD RECOGNISED WITH ISO/IEC 17025 - Testing

This document shall not be reproduced expect in full

Accredited for compliance



|                        | SOIL   AUGREGATE   CONCRET            |               | 0              |
|------------------------|---------------------------------------|---------------|----------------|
|                        | TEST REPORT - AS 1289.3.1.1, 3.2.1, 3 | .3.1 & 3.4.1  |                |
| Client:                | Brown Geotechnical                    | Ticket No.    | S1928          |
| Client Address:        | PO Box 278 Como, WA, 6952             | Report No.    | WG20/9808_1_PI |
| Project:               | Tallangatta                           | Sample No.    | WG20/9808      |
| Location:              | Muchae                                | Date Sampled: | 20-10-2020     |
| Sample Identification: | TH37 1.2-1.6m                         | Date Tested:  | 29-10-2020     |

## **TEST RESULTS - Consistency Limits (Casagrande)**

| Sampling Method:       | Sampled by Client, Tested as Received |
|------------------------|---------------------------------------|
| History of Sample:     | Oven Dried <50°C                      |
| Method of Preparation: | Dry Sieved                            |

| AS 1289.3.1.1 | Liquid Limit (%)                  | 31  |
|---------------|-----------------------------------|-----|
| AS 1289.3.2.1 | Plastic Limit (%)                 | 14  |
| AS 1289.3.3.1 | Plasticity Index (%)              | 17  |
| AS 1289.3.4.1 | Linear Shrinkage (%)              | 6.5 |
| AS 1289.3.4.1 | Length of Mould (mm)              | 250 |
| AS 1289.3.4.1 | <b>Condition of Dry Specimen:</b> | -   |

| Approved Signatory:                                                                         |  |
|---------------------------------------------------------------------------------------------|--|
|                                                                                             |  |
| Name: Brooke Elliott work Decomment with ISO/IEC 17025 - Testing                            |  |
| Date:         02-November-2020         This document shall not be reproduced except in full |  |
| 235 Bank Street, Welshpool WA 6106   08 9472 3465   www.wgls.com.au                         |  |

# Appendix D

**Groundwater Measurements** 

### TALLANGATTA BORES STATIC DATA

|      |         |          |              |            |            | Total<br>Depth | Stickup | Total<br>Depth |
|------|---------|----------|--------------|------------|------------|----------------|---------|----------------|
| Bore | Easting | Northing | Install Date | RLT (mAHD) | RLG (mAHD) | (mbtoc)        | (magl)  | (mbgl)         |
| TB1  | 405754  | 6505172  | 13/06/2017   | 65.91      | 65.25      | 5.9            | 0.66    | 5.24           |
| TB2  | 406361  | 6505180  | 13/06/2017   | 85.62      | 85         | 6.03           | 0.62    | 5.41           |
| ТВЗ  | 406340  | 6505764  | 13/06/2017   | 81.08      | 80.55      | 2.2            | 0.53    | 1.67           |
| TB4  | 404938  | 6505808  | 13/06/2017   | 55.5       | 54.8       | 4.32           | 0.7     | 6.91           |
| TB5  | 405623  | 6505941  | 13/06/2017   | 67.69      | 67         | 4.16           | 0.69    | 3.47           |
| TB6  | 405100  | 6505093  | 13/06/2017   | 54.61      | 54         | 4.63           | 0.61    | 4.02           |
| TB7  | 405596  | 6504222  | 13/06/2017   | 59.09      | 58.4       | 5.24           | 0.69    | 4.55           |
| TB8  | 405932  | 6504216  | 13/06/2017   | 65.84      | 65.25      | 4.76           | 0.59    | 4.17           |
| ТВ9  | 406375  | 6504202  | 13/06/2017   | 75.48      | 74.8       | 3.61           | 0.68    | 2.93           |
| GD20 | 405300  | 6506021  | uk           | 62.09      | 61.48      | 19.51          | 0.61    | 18.9           |
| 2-98 | 406399  | 6502795  | uk           | 58.893     | 58.29      | 18.603         | 0.603   | 18             |

### TALLANGATTA BORES DEPTHS TO WATER

|      | DEPTH TO WAT | ER (mbgl)  |            |            |            |           |           |
|------|--------------|------------|------------|------------|------------|-----------|-----------|
| Bore | 17/08/2017   | 12/01/2018 | 18/10/2018 | 30/05/2019 | 21/08/2020 | 9/09/2020 | 2/10/2020 |
| TB1  | 2.4          |            | 0.6        |            | 4.64       |           | >5.18     |
| TB2  | 1.51         |            | 1.38       |            | 2.95       |           | 2.95      |
| TB3  | 0.35         |            | 0.61       |            | 0.7        |           | 0.94      |
| TB4  | 0.22         |            | 0.83       |            | 0.41       |           | 1.09      |
| TB5  | 0.61         |            | 0.76       |            | >3.45      |           | >3.45     |
| TB6  | 0.28         |            | 0.66       |            | 0.37       | 0.45      | 0.83      |
| TB7  | 0.82         |            | 1.2        |            | 1.14       |           | 1.3       |
| TB8  | 0.44         |            | 1.02       |            | 1.11       |           | 2.22      |
| TB9  | 0.26         |            | 0.82       |            | 0.56       |           | 1.02      |
| GD20 | 0.19         |            |            |            | 0.88       |           | 1.48      |
| 2-98 | 1.49         |            |            |            | 2.117      |           | 2.267     |

### TALLANGATTA BORES WATER LEVELS

|      | WATER LEVEL | (m AHD)    |            |            |            |           |           |
|------|-------------|------------|------------|------------|------------|-----------|-----------|
| Bore | 17/08/2017  | 12/01/2018 | 18/10/2018 | 30/05/2019 | 21/08/2020 | 9/09/2020 | 2/10/2020 |
| TB1  | 62.85       |            | 64.67      |            | 60.61      |           | <60.07    |
| TB2  | 83.49       |            | 83.66      |            | 82.05      |           | 82.05     |
| TB3  | 80.2        |            | 79.92      |            | 79.85      |           | 79.61     |
| TB4  | 54.58       |            | 54         |            | 54.39      |           | 53.71     |
| TB5  | 66.39       |            | 66.24      |            | <63.55     |           | <63.55    |
| TB6  | 53.72       |            | 53.34      |            | 53.63      | 53.55     | 53.17     |
| TB7  | 57.58       |            | 57.23      |            | 57.26      |           | 57.1      |
| TB8  | 64.81       |            | 64.22      |            | 64.14      |           | 63.03     |
| TB9  | 74.54       |            | 73.97      |            | 74.24      |           | 73.78     |
| GD20 | 61.29       |            | 60.91      |            | 60.6       |           | 60        |
| 2-98 | 56.793      |            | 56.623     |            | 56.173     |           | 56.023    |

### TALLANGATTA BORES

### AAMGL and MGL

### from 21/8/20 measurements

| Bore | AAMGL (mAHD) | MGL (mAHD) | DTAAMGL (m) | DTMGL (m) |
|------|--------------|------------|-------------|-----------|
| TB1  | 61.037       | 61.617     | 4.213       | 3.633     |
| TB2  | 82.477       | 83.057     | 2.523       | 1.943     |
| TB3  | 80.277       | 80.857     | 0.273       | -0.307    |
| TB4  | 54.817       | 55.397     | -0.017      | -0.597    |
| TB5  |              |            |             |           |
| TB6  | 54.057       | 54.637     | -0.057      | -0.637    |
| TB7  | 57.687       | 58.267     | 0.713       | 0.133     |
| TB8  | 64.567       | 65.147     | 0.683       | 0.103     |
| TB9  | 74.667       | 75.247     | 0.133       | -0.447    |
| GD20 | 59.85        | 61.35      | 1.63        | 0.13      |
| 2-98 | 56.6         | 57.18      | 1.69        | 1.11      |

# Appendix E

Letter from Aqua Ferre Pty Ltd



# AQUA FERRE PTY LTD

ACN 121 146 772 PO Box 1982 West Perth WA 6872 Level 1, 5 Ord Street West Perth WA 6005 Tel: 08 9282 5400 Fax: 08 9282 5484

29 January 2018

Tom Carmody Director and Licensee Tomahawk Property on behalf of the Muchea Employment Node Precinct 3 Landowner Group 8/355 Stirling Highway Claremont WA 6010

Dear Mr Carmody

### Muchea Employment Node Precinct 3 Landowner Group

I refer to your enquiries to Aqua Ferre Pty Ltd (Aqua Ferre) regarding the availability of water and the potential future supply of water, within the Muchea region.

You have advised that you represent a number of landowners with properties on Great Northern Highway and Brand Highway in Muchea (collectively described as the Muchea Employment Node Precinct 3 Landowner Group or more generally the landowner group).

On behalf of the landowner group you have requested information from Aqua Ferre in support of two planning documents:

- Shire of Chittering Town Planning Scheme No 6 Amendment No.67 Rezoning Lots M1601, 800-804, 192, 194 and 35 Great Northern Highway, Muchea from 'Agricultural Resource' zone to 'Industrial Development' zone, and amending the Scheme Maps accordingly; and
- Precinct 3 Muchea Industrial Park Structure Plan.

In particular you have sought information regarding Aqua Ferre's water entitlements, the prospect that some of Aqua Ferre's water entitlement may be allocated to the landowner group properties, and whether the water can be practically supplied from Aqua Ferre's operations to the landowner group properties.

### 1 MEN & Precinct 3

The Muchea Employment Node Structure Plan (MENSP) was adopted by the WAPC in August 2011, and provides a 20-year planning framework for industrial development within the Shire of Chittering. We understand that the MENSP is currently under review and a revised document is expected to be released during 2019.

You have advised that the subject land is located within Precinct 3, which forms the eastern portion of the MENSP, to the west of Great Northern Highway (GNH).

Precinct 3 of the Muchea Employment Node (more recently referred to as the Muchea Industrial Park (MIP)) ('the Structure Plan area') is approximately 185ha in area and located to the south east of the

townsite of Muchea. Precinct 3 is triangular in shape and extends in a lineal pattern from Brand Highway in the north, along Great Northern Highway (GNH) in the east, to the southern boundary of the Shire of Chittering, and along the Perth-Darwin Highway (PDNH) to the west, which is currently under construction.

Figure 1 below shows the proposed Precinct 3 development boundaries (Urbis 2019, LPS Amendment, Muchea Employment Node, DWG-11).



# PROPOSED SCHEME

Figure 1 Proposed Precinct 3 development

Urbis<sup>1</sup> have indicated that the land has largely been historically cleared for agricultural purposes and contains stands of large, mature trees with degraded understorey, and a number of rural drainage lines.

<sup>&</sup>lt;sup>1</sup> Urbis Pty Ltd 2019, Precinct 3, Muchea Industrial Park, Structure Plan, Draft January 2019

You have advised that the Structure Plan<sup>2</sup> will provide approximately 51 lots of approximately 1.3ha to 7.6ha providing flexibility for a range of industrial uses, expected to be primarily transport logistics related.

We understand that the Structure Plan is being progressed concurrently with Amendment No.67 to LPS6 which proposes to rezone the land from 'Agricultural Resource Zone' to the 'Industrial Development' zone, to introduce land use permissibility for Precinct 3; clarify requirements for the preparation of Management Plans, and introduce provisions relating to provision of reticulated water and construction of the loop road.

### 2 Aqua Ferre

Aqua Ferre was established to be an independent water service provider following approaches by property development groups seeking water services in the Chittering/Muchea region. Aqua Ferre is proposing to build and operate a potable water supply system at Reserve Road, Chittering (as shown in Figure 2).

The proposed water treatment plant (WTP) would be operated as a constant flow rate to promote a stable process with the intention of producing reliable potable water that meets the Australian Drinking Water Guidelines.

Figure 2 below broadly shows the Precinct 3 development (outlined in red) to the south of Harvis' proposed MEN (Phase 1) development (outlined in yellow) and Aqua Ferre's proposed water facility to the north.



Figure 2 Development boundaries

<sup>&</sup>lt;sup>2</sup> Urbis Pty Ltd 2019, Precinct 3, Muchea Industrial Park, Structure Plan, Draft January 2019

### 2.1 Water Entitlement

The Reserve Road (Chittering) property currently has a total water entitlement or allocation (licence to abstract water from an artesian aquifer) of 288,800 kL per annum. The developer of the Reserve Road residential development, Riverside, has transferred the Water Licence GWL 59907(3) to the Water Corporation to enable the licence to be changed from an agricultural extraction to public water supply. It is intended that this water entitlement will be transferred to Aqua Ferre when a water service licence has been granted.

Aqua Ferre has similar entitlement rights to a further 362,900 kL per annum licence, originally GWL 102502(4) which is now part of GWL 65011.

In total, it is intended that Aqua Ferre will have access to 651,700 kL of water per annum.

There is an existing production bore located within the proposed Reserve Road development that was previously used for wildflower irrigation, where the proposed potable WTP would be located.

### 2.2 Existing water supply commitments

Aqua Ferre intends supplying approximately 153 ML of treated potable water to the residential development at Reserve Road, Chittering, and to a commercial/industrial development at the adjacent MEN (northern Precinct 1 only). It is intended that a further 75 ML will be set aside for future demand across these two developments.



Figure 3 Location of Reserve Road residential development and MEN

The new Reserve Road rural living allotment development is located 8km north east of the Muchea town site and 80km north of the Perth central business district. It is also in close proximity (4km) to the

proposed MEN on the eastern side of Great Northern Highway. The development is in accordance with the Shire of Chittering's planning scheme (2004). The Reserve Road development covers an area of approximately 160 hectares and involves the creation of approximately 245 rural residential allotments in progressive stages. It is a requirement of the development approval that potable reticulated water is available.



Figure 4 Contour map (5m contour lines) of the Harvis MEN development showing ephemeral swale

Phase 1 of the MEN development is being undertaken by development group Harvis Capital Pty Ltd (Harvis). The Harvis development is located on the northern end of the proposed MEN. The site is slightly undulating with an ephemeral swale running through the development (Figure 4). The development is well placed and has been planned around the proposed Perth Darwin Highway.

It is the intention of the MEN development that these lots also have a reticulated water resource. Currently, the area does not have a public water supply scheme. Aqua Ferre is finalising documentation to allow the Economic Regulation Authority Western Australia to consider an application for a water services licence.

It is proposed that the water supply for the Harvis MEN development will have a standalone delivery and network system, to ensure that the demand of both systems can meet peak demand and firefighting requirements.

After treatment, it is intended that the water required for the Harvis MEN site will be delivered to a 500kL holding tank with aeration. Water would be reticulated to customers using a standard, continually pressurised water reticulation network. The piping would follow the general topography and alignment of the development streets and will have 600mm coverage.

### 3 Precinct 3 water requirement

You have advised that the intention is that the land the subject of the Structure Plan would be serviced with reticulated water provided by a licensed water provider.

The total area of supply is for an industrial development totalling approximately 185 hectares. No indication of staging of development has been provided at this point.

Estimated annual water usage has been provided (based on preliminary modelling by Cossill & Webley) as 203ML per annum on a net area of 139 hectares (after allowing for a 25% reduction in land area calculation to accommodate roads/drainage). The proposed system has been modelled at 4kL/day per hectare based on advice from Cossill & Webley of studies of similar industry types and uses. It is noted that this compares to the Water Corporation design standard for industrial land of approximately 17 kL/ha/day.

Based on your advice of estimated water usage, Aqua Ferre would have capacity under its entitlements to meet the demand of the subject land. This is not an undertaking to commit an allocation of water, or to supply water, to the Muchea Employment Node Precinct 3 Landowner Group. Any such arrangements would be the subject to future commercial negotiation, agreement on terms including pricing and remaining water availability under Aqua Ferre's entitlements.

### 4 Supply assessment

Aqua Ferre has conducted a preliminary desktop assessment of the potential supply route from its planned water treatment plant at Reserve Road to the proposed Precinct 3 development via Harvis' phase 1 MEN development. This represents a distance of approximately 3.5 kilometres.

The assessment did not highlight any major engineering impediments to the provision of water to the proposed development. (This is not to say, however, that any impediments would not become apparent on more detailed analysis.)

Any proposal for supply would be inclusive of the requirements of:

- Water Corporation Design Standard DS 63 Water Reticulation Standard Design and Construction Requirements for Water Reticulation Systems or Water Reticulation Systems up to DN250
- DFES requirements for firefighting services
- Hydraulic modelling using EPANET 2 for system hydraulics.

Hydraulic modelling would require topographical mapping at 0.5m.

Additionally, there would be a requirement for a water reserve for tanks, pumps, sumps, generator and chlorination which would need to be met by the subject landowners' group.

### 5 Disclaimer

This report is dated 29 January 2019 and incorporates information available to Aqua Ferre up to that date only. It excludes consideration of any information arising, or event occurring, after that date which may impact opinions expressed or statements made by Aqua Ferre in this report.

Aqua Ferre has prepared this report on the instructions, and for the sole benefit, of Tomahawk Property (Instructing Party), for inclusion within a rezoning application and Structure Plan as described in paragraph 3 of this letter (Purpose) and not for any other purpose or use. To the extent permitted by applicable law, Aqua Ferre expressly disclaims all liability, whether direct or indirect:

- to the Instructing Party, which may arise in connection with any reliance or purported reliance on this report for any purpose other than the Purpose, and
- to any other person, which may arise in connection with any reliance or purported reliance on this report for any purpose whatsoever (including the Purpose).

All statements and opinions contained in or associated with this report are made on the basis of information supplied to Aqua Ferre as at the date of this report, and upon which Aqua Ferre has relied. To the extent permitted by applicable law, Aqua Ferre expressly disclaims any liability, whether direct or indirect, which may arise in connection with any errors or omissions in this report arising from information provided to Aqua Ferre by the Instructing Party or by any other person.

Achievement of any proposed or intended events or circumstances described in this report will depend, among other things, on the actions of others, over which Aqua Ferre has no control. To the extent permitted by applicable law, Aqua Ferre expressly disclaims any liability, whether direct or indirect, which may arise in connection with the delay in, or failure to occur of, any proposed or intended events or circumstances described in this report.

Yours sincerely

Peter Fogarty Director

# Appendix F

**Flow Calculations** 

#### LOTS - 1 YEAR ARI 1 HOUR

| Rainfall Inte | nsity i (mm/h) | 15.1          | (1yr, 1hr Storm) |         |              |
|---------------|----------------|---------------|------------------|---------|--------------|
| Runoff Coef   | ficient Lots   | 0.8           |                  |         |              |
| Permeability  | / k (m/hr)     | 0.0417        |                  |         |              |
| Segment       | Lot(s)         | Lot Area (m2) | Ai (m2)          | Q (L/s) | Vinflow (m3) |
| AI            | 14             | 20000         | 16000            | 67      | 242          |
|               | 15             | 20000         | 16000            | 67      | 242          |
|               | 10             | 20000         | 10000            | 07      | 242          |
|               | 10             | 20000         | 16000            | 67      | 242          |
|               | 42             | 22000         | 17600            | 74      | 266          |
|               | 45             | 76000         | 60800            | 255     | 919          |
| A2            |                |               |                  | 0       | 0            |
|               | 10             | 12000         | 9600             | 40      | 145          |
|               | 11             | 13000         | 10400            | 44      | 157          |
|               | 12             | 16000         | 12800            | 54      | 193          |
|               | 13             | 17000         | 13600            | 57      | 206          |
| A3            |                |               |                  | 0       | 0            |
|               | 43             | 15000         | 12000            | 50      | 181          |
|               | 44             | 13000         | 10400            | 44      | 157          |
| A4            |                | 10000         | 10100            | 0       | 0            |
| ~~            | 46             | 116000        | 02800            | 200     | 1402         |
|               | 40             | 116000        | 92800            | 390     | 1402         |
| A5            |                |               |                  | 0       | 0            |
|               | 47             | 91000         | 72800            | 306     | 1100         |
|               | 48             | 66000         | 52800            | 222     | 798          |
|               | 49N            | 33000         | 26400            | 111     | 399          |
| B1            |                |               |                  | 0       | 0            |
| C1            |                |               |                  | 0       | 0            |
| ••            | 22             | 23000         | 18400            | 77      | 278          |
| C2            | ~~             | 20000         | 10400            |         | 210          |
| 02            |                | 10000         |                  | 0       | 0            |
|               | 23             | 12000         | 9600             | 40      | 145          |
|               | 24             | 13000         | 10400            | 44      | 157          |
| C3            |                |               |                  | 0       | 0            |
|               | 20             | 15000         | 12000            | 50      | 181          |
|               | 21             | 15000         | 12000            | 50      | 181          |
|               | 32             | 15000         | 12000            | 50      | 181          |
| C4            |                |               |                  | 0       | 0            |
| •.            | 33             | 51000         | 40800            | 171     | 617          |
|               | 34             | 50000         | 40000            | 168     | 604          |
|               | 35             | 50000         | 40000            | 100     | 604          |
|               | 35             | 50000         | 40000            | 100     | 604          |
|               | 30             | 41000         | 32800            | 138     | 496          |
|               | 37             | 60000         | 48000            | 201     | 725          |
|               | 38             | 40000         | 32000            | 134     | 484          |
|               | 39             | 40000         | 32000            | 134     | 484          |
|               | 40             | 40000         | 32000            | 134     | 484          |
|               | 41             | 40000         | 32000            | 134     | 484          |
| D1            |                |               |                  | 0       | 0            |
|               | 25             | 16000         | 12800            | 54      | 193          |
|               | 28             | 20000         | 16000            | 67      | 242          |
|               | 20             | 20000         | 16000            | 67      | 242          |
|               | 29             | 20000         | 16000            | 07      | 242          |
|               | 30             | 21000         | 16800            | /1      | 254          |
|               | 31             | 14000         | 11200            | 47      | 169          |
| D2            |                |               |                  | 0       | 0            |
|               | 26             | 13000         | 10400            | 44      | 157          |
|               | 27             | 13000         | 10400            | 44      | 157          |
| D3            |                |               |                  | 0       | 0            |
|               | 54             | 33000         | 26400            | 111     | 300          |
|               | 55             | 21000         | 16800            | 71      | 254          |
| D4            | 55             | 21000         | 10000            | 7.1     | 234          |
| D4            |                |               |                  |         |              |
| D5            |                |               |                  |         |              |
|               | 49S            | 33000         | 26400            | 111     | 399          |
|               | 50             | 51000         | 40800            | 171     | 617          |
|               | 51             | 61000         | 48800            | 205     | 737          |
| Others        |                |               |                  |         |              |
|               | 1              | 8512          | 6810             | 29      | 103          |
|               | 2              | 10000         | 8000             | 34      | 121          |
|               | 3              | 11000         | 8900             | 37      | 100          |
|               | 3              | 16000         | 12900            | 5/      | 100          |
|               | 4              | 10000         | 12000            | 54      | 192          |
|               | 5              | 19000         | 15200            | 64      | 230          |
|               | 6              | 25000         | 20000            | 84      | 302          |
|               | 7              | 25000         | 20000            | 84      | 302          |
|               | 8              | 18000         | 14400            | 60      | 218          |
|               | 9              | 22000         | 17600            | 74      | 266          |
|               | 17             | 40000         | 32000            | 134     | 484          |
|               | 18             | 36000         | 28000            | 101     | 105          |
|               | 10             | 30000         | 20800            | 121     | 435          |
|               | 19             | 34000         | 27200            | 114     | 411          |
|               | 52             | 40000         | 32000            | 134     | 484          |
|               | 53             | 40000         | 32000            | 134     | 484          |

| Basin Sizin<br>A1 | g   | Depth | Slope 1:x | Base Width | Base Length | Top Width (m) | Top Length (m) | Volume | Effective Volume | Surface Area (m2) | Volume check |
|-------------------|-----|-------|-----------|------------|-------------|---------------|----------------|--------|------------------|-------------------|--------------|
|                   | 14  | 0.5   | 4         | 20         | 20          | 24            | 24             | 243    | 263              | 576               | ok           |
|                   | 15  | 0.5   | 4         | 20         | 20          | 24            | 24             | 243    | 263              | 576               | ok           |
|                   | 16  | 0.5   | 4         | 20         | 20          | 24            | 24             | 243    | 263              | 576               | ok           |
|                   | 10  | 0.5   | 7         | 20         | 20          | 24            | 24             | 245    | 203              | 576               | UK           |
|                   | 42  | 0.5   | -         | 21         | 21          | 25            | 25             | 265    | 207              | 025               | UK           |
|                   | 45  | 0.5   | 4         | 40         | 40          | 44            | 44             | 883    | 956              | 1936              | OK           |
| A2                |     |       |           |            |             |               |                |        |                  |                   |              |
|                   | 10  | 0.5   | 4         | 15         | 15          | 19            | 19             | 145    | 157              | 361               | ok           |
|                   | 11  | 0.5   | 4         | 15         | 15          | 19            | 19             | 145    | 157              | 361               | ok           |
|                   | 12  | 0.5   | 4         | 17         | 17          | 21            | 21             | 181    | 196              | 441               | ok           |
|                   | 13  | 0.5   | 4         | 18         | 18          | 22            | 22             | 201    | 217              | 484               | ok           |
| A3                |     |       |           |            |             |               |                |        |                  |                   |              |
|                   | 43  | 0.5   | 4         | 17         | 17          | 21            | 21             | 181    | 196              | 441               | ok           |
|                   | 10  | 0.5   | 4         | 15         | 15          | 19            | 19             | 145    | 157              | 361               | ok           |
|                   | 44  | 0.0   | -         | 10         | 10          | 15            | 15             | 145    | 157              | 501               | ŬŔ.          |
| A4                | 10  | 0.5   | 4         | 40         | 49          | 53            | 52             | 1201   | 1410             | 2800              | ok           |
|                   | 40  | 0.5   | -         | 45         | 49          | 55            | 55             | 1301   | 1410             | 2009              | UK           |
| A5                |     |       |           |            |             |               |                |        |                  |                   |              |
|                   | 47  | 0.5   | 4         | 44         | 44          | 48            | 48             | 1059   | 1147             | 2304              | ok           |
|                   | 48  | 0.5   | 4         | 37         | 37          | 41            | 41             | 761    | 825              | 1681              | ok           |
|                   | 49N | 0.5   | 4         | 29         | 29          | 33            | 33             | 481    | 521              | 1089              | ok           |
| A6                |     |       |           |            |             |               |                |        |                  |                   |              |
| B1                |     |       |           |            |             |               |                |        |                  |                   |              |
| C1                |     |       |           |            |             |               |                |        |                  |                   |              |
| 01                | 22  | 0.5   | 4         | 21         | 21          | 25            | 25             | 265    | 287              | 625               | ok           |
| <u></u>           | 22  | 0.0   |           |            |             | 25            | 25             | 205    | 207              | 025               | ŬŔ.          |
| 62                | 00  | 0.5   | 4         | 4 5        | 45          | 40            | 10             | 445    | 457              | 264               | -1.          |
|                   | 23  | 0.5   | 4         | 15         | 15          | 19            | 19             | 145    | 15/              | 301               | OK           |
|                   | 24  | 0.5   | 4         | 15         | 15          | 19            | 19             | 145    | 157              | 361               | OK           |
| C3                |     |       |           |            |             |               |                |        |                  |                   |              |
|                   | 20  | 0.5   | 4         | 17         | 17          | 21            | 21             | 181    | 196              | 441               | ok           |
|                   | 21  | 0.5   | 4         | 17         | 17          | 21            | 21             | 181    | 196              | 441               | ok           |
|                   | 32  | 0.5   | 4         | 17         | 17          | 21            | 21             | 181    | 196              | 441               | ok           |
| C4                |     |       |           |            |             |               |                |        |                  |                   |              |
| •.                | 33  | 0.5   | 4         | 32         | 32          | 36            | 36             | 579    | 627              | 1296              | ok           |
|                   | 24  | 0.5   | 4         | 32         | 32          | 36            | 36             | 579    | 627              | 1200              | ok           |
|                   | 34  | 0.5   | 4         | 22         | 22          | 30            | 36             | 575    | 627              | 1230              | OK<br>ok     |
|                   | 35  | 0.5   | 7         | 20         | 20          | 30            | 50             | 579    | 027              | 1290              | UK           |
|                   | 36  | 0.5   | 4         | 29         | 29          | 33            | 33             | 481    | 521              | 1089              | OK           |
|                   | 37  | 0.5   | 4         | 35         | 35          | 39            | 39             | 685    | 742              | 1521              | ok           |
|                   | 38  | 0.5   | 4         | 28         | 28          | 32            | 32             | 451    | 488              | 1024              | ok           |
|                   | 39  | 0.5   | 4         | 28         | 28          | 32            | 32             | 451    | 488              | 1024              | ok           |
|                   | 40  | 0.5   | 4         | 28         | 28          | 32            | 32             | 451    | 488              | 1024              | ok           |
|                   | 41  | 0.5   | 4         | 28         | 28          | 32            | 32             | 451    | 488              | 1024              | ok           |
| D1                |     |       |           |            |             |               |                |        |                  |                   |              |
|                   | 25  | 0.5   | 4         | 17         | 17          | 21            | 21             | 181    | 196              | 441               | ok           |
|                   | 28  | 0.5   | 4         | 20         | 20          | 24            | 24             | 243    | 263              | 576               | ok           |
|                   | 20  | 0.5   | 4         | 20         | 20          | 24            | 24             | 240    | 200              | 576               | ok           |
|                   | 29  | 0.0   |           | 20         | 20          | 24            | 24             | 243    | 203              | 570               | UK           |
|                   | 30  | 0.5   | -         | 20         | 20          | 24            | 24             | 243    | 203              | 576               | UK .         |
|                   | 31  | 0.5   | 4         | 16         | 16          | 20            | 20             | 163    | 176              | 400               | OK           |
| D2                |     |       |           |            |             |               |                |        |                  |                   |              |
|                   | 26  | 0.5   | 4         | 15         | 15          | 19            | 19             | 145    | 157              | 361               | ok           |
|                   | 27  | 0.5   | 4         | 15         | 15          | 19            | 19             | 145    | 157              | 361               | ok           |
| D3                |     |       |           |            |             |               |                |        |                  |                   |              |
|                   | 54  | 0.5   | 4         | 26         | 26          | 30            | 30             | 393    | 425              | 900               | ok           |
|                   | 55  | 0.5   | 4         | 20         | 20          | 24            | 24             | 243    | 263              | 576               | ok           |
| D4                |     |       |           |            |             |               |                |        |                  |                   |              |
| D5                |     |       |           |            |             |               |                |        |                  |                   |              |
| 55                | 400 | 0.5   | 4         | 26         | 26          | 20            | 20             | 202    | 425              | 000               | ok           |
|                   | 495 | 0.5   | -         | 20         | 20          | 30            | 30             | 393    | 425              | 900               | UK .         |
|                   | 50  | 0.5   | 4         | 32         | 32          | 36            | 36             | 579    | 627              | 1296              | OK           |
|                   | 51  | 0.5   | 4         | 35         | 35          | 39            | 39             | 685    | 742              | 1521              | ok           |
| Others            |     |       |           |            |             |               |                |        |                  |                   |              |
|                   | 1   | 0.5   | 4         | 12         | 12          | 16            | 16             | 99     | 107              | 256               | ok           |
|                   | 2   | 0.5   | 4         | 13         | 13          | 17            | 17             | 113    | 123              | 289               | ok           |
|                   | 3   | 0.5   | 4         | 14         | 14          | 18            | 18             | 129    | 139              | 324               | ok           |
|                   | 4   | 0.5   | 4         | 17         | 17          | 21            | 21             | 181    | 196              | 441               | ok           |
|                   | 5   | 0.5   | 4         | 19         | 19          | 23            | 23             | 221    | 240              | 529               | ok           |
|                   | 6   | 0.5   |           | 22         | 22          | 20            | 25             | 221    | 240              | 676               |              |
|                   | 0   | 0.0   | *         | 22         | 22          | 20            | 20             | 209    | 313              | 070               | UK .         |
|                   | 7   | 0.5   | 4         | 22         | 44          | 26            | 26             | 289    | 313              | 6/6               | OK           |
|                   | 8   | 0.5   | 4         | 19         | 19          | 23            | 23             | 221    | 240              | 529               | OK           |
|                   | 9   | 0.5   | 4         | 21         | 21          | 25            | 25             | 265    | 287              | 625               | ok           |
|                   | 17  | 0.5   | 4         | 28         | 28          | 32            | 32             | 451    | 488              | 1024              | ok           |
|                   | 18  | 0.5   | 4         | 27         | 27          | 31            | 31             | 421    | 456              | 961               | ok           |
|                   | 19  | 0.5   | 4         | 26         | 26          | 30            | 30             | 393    | 425              | 900               | ok           |
|                   | 52  | 0.5   | 4         | 28         | 28          | 32            | 32             | 451    | 488              | 1024              | ok           |
|                   | 52  | 0.5   | 4         | 28         | 28          | 32            | 32             | 151    | 488              | 1024              | ok           |
|                   | 00  | 0.0   | -         |            |             | 52            | 52             | -101   | +00              | 1024              | UK           |

#### 1 YEAR ARI 1 HOUR FLOWS - ROADS

 Rainfall Intensity i (mm/h)
 15.1
 (1yr, 1hr Storm)

 Rundf Coefficient Road Reserves
 0.8
 1

 Rundf Coefficient Swate
 1
 1

 Rundf Coefficient Swate
 0
 1

 Rundf Coefficient Swate
 0
 1

 Rundf Coefficient Swate
 0
 1

 Rundf Coefficient OS
 0
 0

 Permeability k (m/hr)
 0.0417
 0

 Driveway With (m)
 10.0
 3.00

| Segment                                                                                                                                                                                                             | Road Reserve (m2)                                                                        | Swale Length (m)                                                                        | Swale Depth (m)                                                                                   | Weir Height (m)                                                                                 | Swale Base Width (m)                                                                                                                       | Swale Top Width (m)                                                                                                        | Swale Area (m2)                                                                       | Lots (m2)                                                                                                                               | POS (m2)                                                                                                                                 | Ai                                                                                                                                               | Segment Peak Flow (L/s)                                                                                                                           | Segment 1 hr Flow (m3)                                                                                                                               |                                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| A1                                                                                                                                                                                                                  | 32745                                                                                    | 870                                                                                     | 0.6                                                                                               | 0.3                                                                                             | 5                                                                                                                                          | 8.60                                                                                                                       | 7482                                                                                  | 0                                                                                                                                       | 0                                                                                                                                        | 27692                                                                                                                                            | 116                                                                                                                                               | 418.5                                                                                                                                                |                                                                                            |
| A2                                                                                                                                                                                                                  | 8531                                                                                     | 256                                                                                     | 0.5                                                                                               | 0.3                                                                                             | 4                                                                                                                                          | 7.00                                                                                                                       | 1792                                                                                  | 0                                                                                                                                       | 0                                                                                                                                        | 7183                                                                                                                                             | 30                                                                                                                                                | 108.6                                                                                                                                                |                                                                                            |
| A3                                                                                                                                                                                                                  | 9956                                                                                     | 295                                                                                     | 0.5                                                                                               | 0.3                                                                                             | 3                                                                                                                                          | 6.00                                                                                                                       | 1770                                                                                  | 0                                                                                                                                       | 0                                                                                                                                        | 8319                                                                                                                                             | 35                                                                                                                                                | 125.7                                                                                                                                                |                                                                                            |
| A4                                                                                                                                                                                                                  | 10792                                                                                    | 229                                                                                     | 0.6                                                                                               | 0.3                                                                                             | 2                                                                                                                                          | 5.60                                                                                                                       | 1282                                                                                  | 0                                                                                                                                       | 0                                                                                                                                        | 8890                                                                                                                                             | 37                                                                                                                                                | 134.3                                                                                                                                                |                                                                                            |
| A5                                                                                                                                                                                                                  | 24409                                                                                    | 583                                                                                     | 0.6                                                                                               | 0.3                                                                                             | 3.5                                                                                                                                        | 7.10                                                                                                                       | 4139                                                                                  | 0                                                                                                                                       | 0                                                                                                                                        | 20355                                                                                                                                            | 85                                                                                                                                                | 307.6                                                                                                                                                |                                                                                            |
| A6                                                                                                                                                                                                                  | 13299                                                                                    | 420                                                                                     | 0.5                                                                                               | 0.3                                                                                             | 4                                                                                                                                          | 7.00                                                                                                                       | 2940                                                                                  | 0                                                                                                                                       | 0                                                                                                                                        | 11227                                                                                                                                            | 47                                                                                                                                                | 169.7                                                                                                                                                |                                                                                            |
| B1                                                                                                                                                                                                                  | 13269                                                                                    | 296                                                                                     | 0.5                                                                                               | 0.3                                                                                             | 2                                                                                                                                          | 5.00                                                                                                                       | 1480                                                                                  | 0                                                                                                                                       | 0                                                                                                                                        | 10911                                                                                                                                            | 46                                                                                                                                                | 164.9                                                                                                                                                |                                                                                            |
| C3                                                                                                                                                                                                                  | 7868                                                                                     | 249                                                                                     | 0.6                                                                                               | 0.3                                                                                             | 3                                                                                                                                          | 6.60                                                                                                                       | 1643                                                                                  | 0                                                                                                                                       | 0                                                                                                                                        | 6623                                                                                                                                             | 28                                                                                                                                                | 100.1                                                                                                                                                |                                                                                            |
| C4                                                                                                                                                                                                                  | 29301                                                                                    | 885                                                                                     | 0.8                                                                                               | 0.3                                                                                             | 4.5                                                                                                                                        | 9.30                                                                                                                       | 8231                                                                                  | 0                                                                                                                                       | 0                                                                                                                                        | 25087                                                                                                                                            | 105                                                                                                                                               | 379.1                                                                                                                                                |                                                                                            |
| D1                                                                                                                                                                                                                  | 4310                                                                                     | 141                                                                                     | 0.6                                                                                               | 0.3                                                                                             | 3.5                                                                                                                                        | 7.10                                                                                                                       | 1001                                                                                  | 0                                                                                                                                       | 0                                                                                                                                        | 3648                                                                                                                                             | 15                                                                                                                                                | 55.1                                                                                                                                                 |                                                                                            |
| D2                                                                                                                                                                                                                  | 5856                                                                                     | 189                                                                                     | 0.6                                                                                               | 0.3                                                                                             | 3                                                                                                                                          | 6.60                                                                                                                       | 1247                                                                                  | 0                                                                                                                                       | 0                                                                                                                                        | 4934                                                                                                                                             | 21                                                                                                                                                | 74.6                                                                                                                                                 |                                                                                            |
| D3                                                                                                                                                                                                                  | 15265                                                                                    | 326                                                                                     | 0.6                                                                                               | 0.3                                                                                             | 3                                                                                                                                          | 6.60                                                                                                                       | 2152                                                                                  | 0                                                                                                                                       | 0                                                                                                                                        | 12642                                                                                                                                            | 53                                                                                                                                                | 191.1                                                                                                                                                |                                                                                            |
| D4                                                                                                                                                                                                                  | 10526                                                                                    | 335                                                                                     | 0.5                                                                                               | 0.3                                                                                             | 4                                                                                                                                          | 7.00                                                                                                                       | 2345                                                                                  | 0                                                                                                                                       | 0                                                                                                                                        | 8890                                                                                                                                             | 37                                                                                                                                                | 134.3                                                                                                                                                |                                                                                            |
| D5                                                                                                                                                                                                                  | 27241                                                                                    | 623                                                                                     | 0.6                                                                                               | 0.3                                                                                             | 3.5                                                                                                                                        | 7.10                                                                                                                       | 4423                                                                                  | 0                                                                                                                                       | 0                                                                                                                                        | 22677                                                                                                                                            | 95                                                                                                                                                | 342.7                                                                                                                                                |                                                                                            |
|                                                                                                                                                                                                                     |                                                                                          |                                                                                         |                                                                                                   |                                                                                                 |                                                                                                                                            |                                                                                                                            |                                                                                       |                                                                                                                                         |                                                                                                                                          |                                                                                                                                                  |                                                                                                                                                   |                                                                                                                                                      |                                                                                            |
| Trapezoidal Swales                                                                                                                                                                                                  |                                                                                          |                                                                                         |                                                                                                   |                                                                                                 |                                                                                                                                            |                                                                                                                            |                                                                                       |                                                                                                                                         |                                                                                                                                          |                                                                                                                                                  |                                                                                                                                                   |                                                                                                                                                      |                                                                                            |
| Trapezoidal Swales                                                                                                                                                                                                  |                                                                                          |                                                                                         |                                                                                                   |                                                                                                 |                                                                                                                                            |                                                                                                                            |                                                                                       |                                                                                                                                         | Storage per Weir                                                                                                                         |                                                                                                                                                  |                                                                                                                                                   |                                                                                                                                                      |                                                                                            |
| Swale Segment                                                                                                                                                                                                       | No. Driveways                                                                            | No. Weirs                                                                               | Length                                                                                            | Weir Spacing (m)                                                                                | Long Slope                                                                                                                                 | Max U/S Reach (m)                                                                                                          | Upstream Ht (m)                                                                       | 1 hr Inflow per Weir (m3)                                                                                                               | Storage per Weir<br>(m3)                                                                                                                 | Total Storage (m3)                                                                                                                               | Effective Storage per Weir (m3)                                                                                                                   | Effective Total Storage (m3)                                                                                                                         | Volume Check                                                                               |
| Swale Segment                                                                                                                                                                                                       | No. Driveways<br>5                                                                       | No. Weirs<br>65                                                                         | Length<br>870                                                                                     | Weir Spacing (m)<br>13                                                                          | Long Slope<br>0.0179                                                                                                                       | Max U/S Reach (m)<br>12.6                                                                                                  | Upstream Ht (m)<br>0.1                                                                | 1 hr Inflow per Weir (m3)<br>6.44                                                                                                       | Storage per Weir<br>(m3)<br>12.55                                                                                                        | Total Storage (m3)<br>816.05                                                                                                                     | Effective Storage per Weir (m3)<br>15.66                                                                                                          | Effective Total Storage (m3)<br>1017.58                                                                                                              | Volume Check<br>ok                                                                         |
| Swale Segment<br>A1<br>A2                                                                                                                                                                                           | No. Driveways<br>5<br>3                                                                  | No. Weirs<br>65<br>4                                                                    | Length<br>870<br>256                                                                              | Weir Spacing (m)<br>13<br>64                                                                    | Long Slope<br>0.0179<br>0.0066                                                                                                             | Max U/S Reach (m)<br>12.6<br>45.5                                                                                          | Upstream Ht (m)<br>0.1<br>0.0                                                         | 1 hr Inflow per Weir (m3)<br>6.44<br>27.14                                                                                              | Storage per Weir<br>(m3)<br>12.55<br>22.27                                                                                               | Total Storage (m3)<br>816.05<br>89.09                                                                                                            | Effective Storage per Weir (m3)<br>15.66<br>29.42                                                                                                 | Effective Total Storage (m3)<br>1017.58<br>117.70                                                                                                    | Volume Check<br>ok<br>ok                                                                   |
| Swale Segment<br>A1<br>A2<br>A3                                                                                                                                                                                     | No. Driveways<br>5<br>3<br>2                                                             | No. Weirs<br>65<br>4<br>5                                                               | Length<br>870<br>256<br>295                                                                       | Weir Spacing (m)<br>13<br>64<br>59                                                              | Long Slope<br>0.0179<br>0.0066<br>0.0044                                                                                                   | Max U/S Reach (m)<br>12.6<br>45.5<br>55.0                                                                                  | Upstream Ht (m)<br>0.1<br>0.0<br>0.1                                                  | 1 hr Inflow per Weir (m3)<br>6.44<br>27.14<br>25.14                                                                                     | Storage per Weir<br>(m3)<br>12.55<br>22.27<br>33.33                                                                                      | Total Storage (m3)<br>816.05<br>89.09<br>166.67                                                                                                  | Effective Storage per Weir (m3)<br>15.66<br>29.42<br>42.11                                                                                        | Effective Total Storage (m3)<br>1017.58<br>117.70<br>210.53                                                                                          | Volume Check<br>ok<br>ok<br>ok                                                             |
| Swale Segment<br>A1<br>A2<br>A3<br>A4                                                                                                                                                                               | No. Driveways<br>5<br>3<br>2<br>1                                                        | No. Weirs<br>65<br>4<br>5<br>17                                                         | Length<br>870<br>256<br>295<br>229                                                                | Weir Spacing (m)<br>13<br>64<br>59<br>13                                                        | Long Slope<br>0.0179<br>0.0066<br>0.0044<br>0.014                                                                                          | Max U/S Reach (m)<br>12.6<br>45.5<br>55.0<br>12.9                                                                          | Upstream Ht (m)<br>0.1<br>0.0<br>0.1<br>0.1                                           | 1 hr Inflow per Weir (m3)<br>6.44<br>27.14<br>25.14<br>7.90                                                                             | Storage per Weir<br>(m3)<br>12.55<br>22.27<br>33.33<br>7.08                                                                              | Total Storage (m3)<br>816.05<br>89.09<br>166.67<br>120.29                                                                                        | Effective Storage per Weir (m3)<br>15.66<br>29.42<br>42.11<br>8.69                                                                                | Effective Total Storage (m3)<br>1017.58<br>117.70<br>210.53<br>147.73                                                                                | Volume Check<br>ok<br>ok<br>ok<br>ok                                                       |
| Trapezoidal Swales<br>Swale Segment<br>A1<br>A2<br>A3<br>A4<br>A5                                                                                                                                                   | No. Driveways<br>5<br>3<br>2<br>1<br>3                                                   | No. Weirs<br>65<br>4<br>5<br>17<br>23                                                   | Length<br>870<br>256<br>295<br>229<br>583                                                         | Weir Spacing (m)<br>13<br>64<br>59<br>13<br>25                                                  | Long Slope<br>0.0179<br>0.0066<br>0.0044<br>0.014<br>0.0086                                                                                | Max U/S Reach (m)<br>12.6<br>45.5<br>55.0<br>12.9<br>24.0                                                                  | Upstream Ht (m)<br>0.1<br>0.0<br>0.1<br>0.1<br>0.1<br>0.1                             | 1 hr Inflow per Weir (m3)<br>6.44<br>27.14<br>25.14<br>7.90<br>13.37                                                                    | Storage per Weir<br>(m3)<br>12.55<br>22.27<br>33.33<br>7.08<br>18.67                                                                     | Total Storage (m3)<br>816.05<br>89.09<br>166.67<br>120.29<br>433.99                                                                              | Effective Storage per Weir (m3)<br>15.66<br>29.42<br>42.11<br>8.69<br>23.32                                                                       | Effective Total Storage (m3)<br>1017.58<br>117.70<br>210.53<br>147.73<br>536.39                                                                      | Volume Check<br>ok<br>ok<br>ok<br>ok<br>ok                                                 |
| Trapezoidal Swales<br>Swale Segment<br>A1<br>A2<br>A3<br>A4<br>A5<br>A6                                                                                                                                             | No. Driveways<br>5<br>3<br>2<br>1<br>3<br>0                                              | No. Weirs<br>65<br>4<br>5<br>17<br>23<br>19                                             | Length<br>870<br>256<br>295<br>229<br>583<br>420                                                  | Weir Spacing (m)<br>13<br>64<br>59<br>13<br>25<br>22                                            | Long Slope<br>0.0179<br>0.0066<br>0.0044<br>0.014<br>0.0186<br>0.019                                                                       | Max U/S Reach (m)<br>12.6<br>45.5<br>55.0<br>12.9<br>24.0<br>15.8                                                          | Upstream Ht (m)<br>0.1<br>0.0<br>0.1<br>0.1<br>0.1<br>0.1<br>0.0                      | 1 hr inflow per Weir (m3)<br>6.44<br>27.14<br>25.14<br>7.90<br>13.37<br>8.93                                                            | Storage per Weir<br>(m3)<br>12.55<br>22.27<br>33.33<br>7.08<br>18.87<br>7.74                                                             | Total Storage (m3)<br>816.05<br>89.09<br>166.67<br>120.29<br>433.99<br>147.00                                                                    | Effective Storage per Weir (m3)<br>15.66<br>29.42<br>42.11<br>8.69<br>23.32<br>10.22                                                              | Effective Total Storage (m3)<br>1017.58<br>117.70<br>210.53<br>147.73<br>536.39<br>194.20                                                            | Volume Check<br>ok<br>ok<br>ok<br>ok<br>ok<br>ok                                           |
| A1         A2           A3         A4           A5         A6           B1         B1                                                                                                                               | No. Driveways<br>5<br>3<br>2<br>1<br>3<br>0<br>1<br>1                                    | No. Weirs<br>65<br>4<br>5<br>17<br>23<br>19<br>26                                       | Length<br>870<br>256<br>295<br>229<br>583<br>420<br>296                                           | Weir Spacing (m)<br>13<br>64<br>59<br>13<br>25<br>22<br>11                                      | Long Slope<br>0.0179<br>0.0066<br>0.0044<br>0.014<br>0.014<br>0.0086<br>0.019<br>0.0182                                                    | Max U/S Reach (m)<br>12.6<br>45.5<br>55.0<br>12.9<br>24.0<br>15.8<br>11.0                                                  | Upstream Ht (m)<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.0<br>0.1               | 1 hr Inflow per Weir (m3)<br>6.44<br>27.14<br>25.14<br>7.90<br>13.37<br>8.93<br>6.34                                                    | Storage per Weir<br>(m3)<br>12.55<br>22.27<br>33.33<br>7.08<br>18.87<br>7.74<br>5.67                                                     | Total Storage (m3)<br>816.05<br>89.09<br>166.67<br>120.29<br>433.99<br>147.00<br>147.41                                                          | Effective Storage per Weir (m3)<br>15.66<br>29.42<br>42.11<br>8.69<br>23.32<br>10.22<br>7.03                                                      | Effective Total Storage (m3)<br>1017.58<br>117.70<br>210.53<br>147.73<br>536.39<br>194.20<br>182.68                                                  | Volume Check<br>ok<br>ok<br>ok<br>ok<br>ok<br>ok<br>ok                                     |
| Trapezoidai Swales<br>Swale Segment<br>A1<br>A2<br>A3<br>A4<br>A5<br>A6<br>B1<br>C3                                                                                                                                 | No. Drivoways<br>5<br>2<br>1<br>3<br>0<br>1<br>2<br>2                                    | No. Weirs<br>65<br>4<br>5<br>17<br>23<br>19<br>26<br>13                                 | Length<br>870<br>256<br>295<br>229<br>583<br>420<br>296<br>249                                    | Weir Spacing (m)<br>13<br>64<br>59<br>13<br>25<br>22<br>11<br>19                                | Long Slope<br>0.0179<br>0.0066<br>0.0044<br>0.014<br>0.018<br>0.019<br>0.0182<br>0.0185                                                    | Max U/S Reach (m)<br>12.6<br>45.5<br>55.0<br>12.9<br>24.0<br>15.8<br>11.0<br>16.2                                          | Upstream Ht (m)<br>0.1<br>0.0<br>0.1<br>0.1<br>0.1<br>0.0<br>0.0<br>0.1<br>0.0        | 1 hr inflow per Weir (m3)<br>6.44<br>27.14<br>25.14<br>7.90<br>13.37<br>8.93<br>6.34<br>7.70                                            | Storage per Weir<br>(m3)<br>12.55<br>22.27<br>33.33<br>7.08<br>18.87<br>7.74<br>5.67<br>6.32                                             | Total Storage (m3)<br>816.05<br>89.09<br>166.67<br>120.29<br>433.99<br>147.00<br>147.41<br>82.22                                                 | Effective Storage per Weir (m3)<br>15.66<br>29.42<br>42.11<br>8.69<br>23.32<br>10.22<br>7.03<br>8.34                                              | Effective Total Storage (m3)<br>1017.58<br>117.70<br>210.53<br>147.73<br>556.39<br>194.20<br>182.68<br>108.36                                        | Volume Check<br>ok<br>ok<br>ok<br>ok<br>ok<br>ok<br>ok<br>ok                               |
| Trapezoidai Swales<br>Swale Segment<br>A1<br>A2<br>A3<br>A4<br>A5<br>A6<br>B1<br>C3<br>C4                                                                                                                           | No. Driveways<br>5<br>3<br>2<br>1<br>3<br>0<br>1<br>2<br>7                               | No. Weirs<br>65<br>4<br>5<br>17<br>23<br>19<br>26<br>13<br>5                            | Length<br>870<br>256<br>295<br>229<br>583<br>420<br>296<br>249<br>885                             | Weir Spacing (m)<br>13<br>64<br>59<br>13<br>25<br>22<br>11<br>19<br>177                         | Long Slope<br>0.0179<br>0.0066<br>0.0044<br>0.014<br>0.0086<br>0.019<br>0.0182<br>0.0185<br>0.0016                                         | Max U/S Reach (m)<br>12.6<br>45.5<br>55.0<br>12.9<br>24.0<br>15.8<br>11.0<br>16.2<br>163.0                                 | Upstream Ht (m)<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.0<br>0.0 | 1 hr inflow per Weir (m3)<br>6.44<br>27.14<br>25.14<br>7.90<br>13.37<br>8.93<br>6.34<br>7.70<br>75.82                                   | Storage per Weir<br>(m3)<br>12.55<br>22.27<br>33.33<br>7.08<br>18.87<br>7.74<br>5.67<br>6.32<br>127.28                                   | Total Storage (m3)<br>816.05<br>89.09<br>166.67<br>120.29<br>433.99<br>147.00<br>147.41<br>82.22<br>636.39                                       | Effective Storage per Weir (m3)<br>15.66<br>29.42<br>42.11<br>8.69<br>23.32<br>10.22<br>7.03<br>8.34<br>160.49                                    | Effective Total Storage (m3)<br>1017.58<br>117.70<br>210.53<br>147.73<br>536.39<br>194.20<br>182.68<br>108.36<br>802.46                              | Volume Check<br>ok<br>ok<br>ok<br>ok<br>ok<br>ok<br>ok<br>ok<br>ok                         |
| Trapezoidai Swales<br>Swale Segment<br>A1<br>A2<br>A3<br>A4<br>A5<br>A6<br>B1<br>C3<br>C4<br>D1                                                                                                                     | No. Driveways<br>5<br>3<br>2<br>1<br>3<br>0<br>1<br>2<br>7<br>7<br>0                     | No. Weirs<br>65<br>4<br>5<br>17<br>23<br>19<br>26<br>13<br>5<br>3                       | Length<br>870<br>256<br>295<br>283<br>420<br>296<br>249<br>885<br>141                             | Weir Spacing (m)<br>13<br>64<br>59<br>13<br>25<br>22<br>11<br>19<br>177<br>47                   | Long Slope<br>0.0179<br>0.0066<br>0.0044<br>0.014<br>0.019<br>0.0182<br>0.0182<br>0.0165<br>0.0016                                         | Max U/S Reach (m)<br>12.6<br>45.5<br>55.0<br>12.9<br>24.0<br>15.8<br>11.0<br>16.2<br>163.0<br>42.3                         | Upstream Ht (m)<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.0<br>0.1<br>0.0<br>0.0 | 1 hr Inflow per Weir (m3)<br>6.44<br>27.14<br>25.14<br>7.90<br>13.37<br>8.93<br>6.34<br>7.70<br>75.82<br>18.38                          | Storage per Weir<br>(m3)<br>12.55<br>22.27<br>33.33<br>7.08<br>18.87<br>7.74<br>5.67<br>6.32<br>127.28<br>18.59                          | Total Storage (m3)<br>816.05<br>89.09<br>166.67<br>120.29<br>433.99<br>147.00<br>147.41<br>82.22<br>636.39<br>55.77                              | Effective Storage per Weir (m3)<br>15.66<br>2.942<br>42.11<br>2.32<br>10.22<br>7.03<br>8.34<br>160.49<br>24.54                                    | Effective Total Storage (m3)<br>1017.58<br>117.70<br>210.53<br>147.73<br>536.39<br>164.20<br>182.68<br>106.36<br>802.46<br>73.61                     | Volume Check<br>ok<br>ok<br>ok<br>ok<br>ok<br>ok<br>ok<br>ok<br>ok<br>ok<br>ok<br>ok       |
| Trapezoidal Swales           Swale Segment           A1           A2           A3           A4           A5           A6           B1           C3           C4           D1           D2                           | No. Driveways<br>5<br>3<br>1<br>3<br>3<br>2<br>1<br>3<br>0<br>1<br>2<br>7<br>0<br>0<br>0 | No. Weirs<br>65<br>4<br>17<br>23<br>19<br>26<br>13<br>5<br>3<br>5                       | Length<br>870<br>256<br>295<br>583<br>420<br>296<br>249<br>845<br>141<br>189                      | Weir Spacing (m)<br>13<br>64<br>59<br>13<br>25<br>22<br>11<br>19<br>177<br>47<br>38             | Long Slope<br>0.0179<br>0.0066<br>0.004<br>0.014<br>0.019<br>0.0182<br>0.0185<br>0.0016<br>0.0071<br>0.0079                                | Max U/S Reach (m)<br>12.6<br>45.5<br>55.0<br>12.9<br>24.0<br>15.8<br>11.0<br>16.2<br>163.0<br>42.3<br>37.8                 | Upstream Ht (m)<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.0<br>0.0               | 1 hr inflow per Weir (m3)<br>6.44<br>27.14<br>25.14<br>7.90<br>13.37<br>8.93<br>6.34<br>7.70<br>75.82<br>18.38<br>14.91                 | Storage per Weir<br>(m3)<br>12.55<br>22.27<br>33.33<br>7.08<br>18.87<br>7.74<br>5.67<br>6.32<br>127.28<br>18.59<br>15.67                 | Total Storage (m3)<br>816.05<br>89.09<br>166.67<br>120.29<br>433.99<br>147.00<br>147.41<br>82.22<br>636.39<br>55.77<br>78.36                     | Effective Storage per Weir (m3)<br>15.66<br>29.42<br>42.11<br>8.69<br>23.32<br>10.22<br>7.03<br>8.34<br>160.49<br>24.54<br>20.39                  | Effective Total Storage (m3)<br>1017.58<br>117.70<br>210.53<br>147.73<br>158.39<br>184.20<br>182.68<br>108.36<br>802.46<br>73.61<br>101.93           | Volume Check<br>ok<br>ok<br>ok<br>ok<br>ok<br>ok<br>ok<br>ok<br>ok<br>ok<br>ok<br>ok       |
| Trapezoidai Swales<br>Swale Segment<br>A1<br>A2<br>A3<br>A4<br>A5<br>A6<br>B1<br>C3<br>C4<br>D1<br>D2<br>D3                                                                                                         | No. Driveways<br>5<br>3<br>1<br>3<br>0<br>1<br>2<br>7<br>7<br>0<br>0<br>2                | No. Weirs<br>65<br>4<br>5<br>17<br>23<br>19<br>26<br>13<br>5<br>3<br>5<br>26            | Length<br>870<br>256<br>295<br>583<br>420<br>296<br>249<br>885<br>141<br>189<br>326               | Weir Spacing (m)<br>13<br>64<br>59<br>13<br>25<br>22<br>11<br>19<br>177<br>47<br>38<br>13       | Long Slope<br>0.0179<br>0.0068<br>0.0044<br>0.014<br>0.0182<br>0.0182<br>0.0185<br>0.0016<br>0.0071<br>0.0079<br>0.0172                    | Max U/S Reach (m)<br>126<br>455<br>550<br>129<br>140<br>158<br>110<br>162<br>163.0<br>42.3<br>37.8<br>11.8                 | Upstream Ht (m)<br>0.1<br>0.1<br>0.1<br>0.1<br>0.0<br>0.1<br>0.0<br>0.0               | 1 hr Inflow per Weir (m3)<br>6.44<br>27.14<br>25.04<br>13.37<br>8.93<br>6.34<br>7.70<br>75.82<br>16.38<br>14.91<br>7.35                 | Storage per Weir<br>(m3)<br>12.55<br>22.27<br>33.33<br>7.08<br>18.87<br>7.74<br>5.67<br>6.32<br>127.28<br>18.59<br>15.67<br>8.26         | Total Storage (m3)<br>816.05<br>89.09<br>166.67<br>120.29<br>433.99<br>147.00<br>147.41<br>82.22<br>636.39<br>55.77<br>78.36<br>214.64           | Effective Storage per Weir (m3)<br>15.66<br>29.2<br>42.11<br>8.69<br>23.32<br>7.03<br>8.34<br>160.49<br>24.54<br>20.39<br>10.19                   | Effective Total Storage (m3)<br>1017.50<br>117.50<br>210.53<br>536.39<br>104.20<br>182.68<br>108.36<br>802.46<br>73.61<br>101.93<br>265.06           | Volume Check<br>ok<br>ok<br>ok<br>ok<br>ok<br>ok<br>ok<br>ok<br>ok<br>ok<br>ok<br>ok       |
| Trapezoidal Swales           Swale Segment           A1           A2           A3           A4           A5           A6           B1           C3           C4           D1           D2           D3           D4 | No. Driveways<br>5<br>2<br>1<br>3<br>0<br>1<br>2<br>7<br>0<br>0<br>2<br>2<br>2<br>2      | No. Weirs<br>65<br>4<br>5<br>17<br>23<br>19<br>26<br>13<br>5<br>3<br>5<br>5<br>26<br>19 | Length<br>870<br>256<br>295<br>229<br>883<br>420<br>296<br>249<br>885<br>141<br>189<br>326<br>335 | Weir Spacing (m)<br>13<br>64<br>59<br>13<br>25<br>22<br>11<br>19<br>177<br>47<br>38<br>13<br>18 | Long Slope<br>0.0179<br>0.0066<br>0.0044<br>0.014<br>0.019<br>0.0182<br>0.0185<br>0.0016<br>0.0071<br>0.0071<br>0.0079<br>0.0172<br>0.0209 | Max U/S Reach (m)<br>12.6<br>45.5<br>55.0<br>12.9<br>24.0<br>15.8<br>11.0<br>16.2<br>163.0<br>42.3<br>37.8<br>11.8<br>14.4 | Upstream Ht (m)<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.0<br>0.0<br>0.0               | 1 hr Inflow per Weir (m3)<br>6.44<br>27.14<br>25.14<br>7.90<br>13.37<br>8.93<br>6.34<br>7.70<br>75.82<br>18.38<br>14.91<br>7.35<br>7.07 | Storage per Weir<br>(m3)<br>12:55<br>22:27<br>33:33<br>7:08<br>18:87<br>7:74<br>5:67<br>6:32<br>127:28<br>18:59<br>15:67<br>8:26<br>7:03 | Total Storage (m3)<br>816.05<br>89.09<br>166.67<br>120.29<br>433.99<br>147.00<br>147.41<br>82.22<br>636.39<br>55.77<br>78.36<br>214.64<br>133.64 | Effective Storage per Weir (m3)<br>15.66<br>29.42<br>42.11<br>8.69<br>23.32<br>10.22<br>7.03<br>8.34<br>160.49<br>24.54<br>20.39<br>10.19<br>9.29 | Effective Total Storage (m3)<br>1017.58<br>117.70<br>210.53<br>147.73<br>194.20<br>182.68<br>108.36<br>802.46<br>73.61<br>101.93<br>265.06<br>176.55 | Volume Check<br>ok<br>ok<br>ok<br>ok<br>ok<br>ok<br>ok<br>ok<br>ok<br>ok<br>ok<br>ok<br>ok |

| Segment          | Lot(s)    | Area (m2)       | AREAS (m2)           | Area (m2)      | Longoot Bath (m)    | TIME OF CONCE         | NTRATION PRE- | DEVELOPMENT      | TC (min)     | Longoot Both (m)        | TIME OF CONCE   | NTRATION POST | DEVELOPMENT    | TC (min)     | CRITICAL STORM | INTENSITY (mm/h) |
|------------------|-----------|-----------------|----------------------|----------------|---------------------|-----------------------|---------------|------------------|--------------|-------------------------|-----------------|---------------|----------------|--------------|----------------|------------------|
|                  |           | Area (III2)     | Ellective            | Hitea (III2)   | Longest Path (III)  | KE TOP (IIIAHD)       | (mAHD)        | Slope (Ilirkiii) | re (min)     | Longest Fath (iii)      | RE TOP (IIIAHD) | (mAHD)        | Slope (mkm)    | re (min)     | Fieldev        | Postibev         |
| A1               |           |                 | Pre                  | Post           |                     |                       |               |                  |              |                         |                 |               |                |              |                |                  |
|                  | 14<br>15  | 20000<br>20000  | 7000<br>7000         | 17000<br>17000 | 200<br>200          | 65<br>62              | 60.6<br>59    | 22.00<br>15.00   | 10.3<br>11.1 | 200<br>200              | 65<br>62        | 60.6<br>59    | 22.00<br>15.00 | 9.4<br>10.1  | 105.8<br>101.2 | 111.5<br>106.6   |
|                  | 16<br>42  | 20000<br>22000  | 7000<br>7700         | 17000<br>18700 | 193<br>204          | 59.8<br>67.5          | 57.4<br>64.5  | 12.44<br>14.71   | 11.1<br>11.2 | 193<br>204              | 59.8<br>67.5    | 57.4<br>64.5  | 12.44<br>14.71 | 10.2<br>10.3 | 101.1<br>100.4 | 106.5<br>105.7   |
| A2               | 45        | 76000           | 26600                | 64600          | 410                 | 72.6                  | 67            | 13.66            | 20.3         | 410                     | 72.6            | 67            | 13.66          | 18.5         | 71.2           | 75.0             |
|                  | 10        | 12000           | 4200                 | 10200          | 162                 | 60<br>62              | 58.2<br>59.4  | 11.11            | 10.0         | 162                     | 60<br>62        | 58.2<br>59.4  | 11.11          | 9.2<br>9.4   | 107.3<br>105.7 | 113.0            |
|                  | 12        | 17000           | 5950                 | 14450          | 189                 | 65.5                  | 63            | 13.23            | 10.9         | 189                     | 65.5            | 63            | 13.23          | 10.2         | 102.1          | 107.5            |
| ~                | 43<br>44  | 15000           | 5250<br>4550         | 12750          | 179                 | 68.1<br>68.6          | 65.4<br>66    | 15.08            | 10.2         | 179<br>175              | 68.1<br>68.6    | 65.4<br>66    | 15.08<br>14.86 | 9.3<br>9.3   | 106.3<br>106.6 | 111.9            |
| A4               | 46        | 116000          | 40600                | 98600          | 466                 | 82                    | 71            | 23.61            | 19.8         | 466                     | 82              | 71            | 23.61          | 18.1         | 72.2           | 76.0             |
| A5               | 47        | 91000           | 31850                | 77350          | 430                 | 89.7                  | 70.9          | 43.72            | 16.5         | 430                     | 89.7            | 70.9          | 43.72          | 15.1         | 80.1           | 84.4             |
|                  | 48<br>49N | 66000<br>33000  | 23100<br>11550       | 56100<br>28050 | 366<br>305          | 84.5<br>83.9          | 72.2<br>75.4  | 33.61<br>27.87   | 15.3<br>14.2 | 366<br>305              | 84.5<br>83.9    | 72.2<br>75.4  | 33.61<br>27.87 | 14.0<br>13.0 | 83.8<br>87.6   | 88.3<br>92.2     |
| A6<br>B1         |           |                 |                      |                |                     |                       |               |                  |              |                         |                 |               |                |              |                |                  |
| C1               | 22        | 23000           | 8050                 | 19550          | 179                 | 57.2                  | 54            | 17.88            | 9.4          | 179                     | 57.2            | 54            | 17.88          | 8.6          | 111.1          | 117.0            |
| C2               | 23        | 12000           | 4200                 | 10200          | 156                 | 57.4                  | 55.3          | 13.46            | 9.3          | 156                     | 57.4            | 55.3          | 13.46          | 8.5          | 112.2          | 118.1            |
| C3               | 24        | 15000           | 4000                 | 12750          | 170                 | 60                    | 54.9          | 10.06            | 9.2          | 170                     | 57.2            | 54.9          | 14.00          | 0.4          | 101.2          | 106.7            |
|                  | 20 21 32  | 15000           | 5250                 | 12750          | 179                 | 58.7                  | 56.7<br>57.5  | 11.17            | 10.8         | 179                     | 58.7            | 56.7          | 11.17          | 9.9          | 102.6          | 108.1            |
| C4               | 33        | 51000           | 17850                | 43350          | 309                 | 66                    | 60.5          | 17.80            | 15.1         | 309                     | 66              | 60.5          | 17.80          | 13.8         | 84.6           | 89.1             |
|                  | 34<br>35  | 50000<br>50000  | 17500<br>17500       | 42500<br>42500 | 317<br>249          | 67.6<br>69            | 60.5<br>61.5  | 22.40<br>30.12   | 14.8<br>11.0 | 317<br>249              | 67.6<br>69      | 60.5<br>61.5  | 22.40<br>30.12 | 13.5<br>10.0 | 85.5<br>101.9  | 90.1<br>107.3    |
|                  | 36<br>37  | 41000<br>60000  | 14350<br>21000       | 34850<br>51000 | 309<br>354          | 68<br>74              | 61.5<br>63.5  | 21.04<br>29.66   | 14.9<br>15.3 | 309<br>354              | 68<br>74        | 61.5<br>63.5  | 21.04<br>29.66 | 13.6<br>14.0 | 85.2<br>83.7   | 89.7<br>88.2     |
|                  | 38<br>39  | 40000<br>40000  | 14000<br>14000       | 34000<br>34000 | 282<br>283          | 74.7<br>74.8          | 68.1<br>67.7  | 23.40<br>25.09   | 13.3<br>13.2 | 282<br>283              | 74.7<br>74.8    | 68.1<br>67.7  | 23.40<br>25.09 | 12.2<br>12.1 | 90.8<br>91.4   | 95.7<br>96.3     |
|                  | 40<br>41  | 40000<br>40000  | 14000<br>14000       | 34000<br>34000 | 282<br>273          | 73<br>69.8            | 65.6<br>65.5  | 26.24<br>15.75   | 13.0<br>14.0 | 282<br>273              | 73<br>69.8      | 65.6<br>65.5  | 26.24<br>15.75 | 11.9<br>12.8 | 92.1<br>88.4   | 97.0<br>93.1     |
| D1               | 25        | 16000           | 5600                 | 13600          | 190                 | 57                    | 54.8          | 11.58            | 11.3         | 190                     | 57              | 54.8          | 11.58          | 10.4         | 99.9           | 105.2            |
|                  | 28        | 20000           | 7000                 | 17000          | 200                 | 62.3                  | 57            | 26.50            | 9.9          | 200                     | 62.3            | 57            | 26.50          | 9.3          | 108.2          | 112.3            |
| D2               | 31        | 14000           | 4900                 | 11900          | 182                 | 60.5                  | 57.3          | 17.58            | 10.5         | 182                     | 60.5            | 57.3          | 17.58          | 9.3          | 106.7          | 112.4            |
|                  | 26<br>27  | 13000<br>13000  | 4550<br>4550         | 11050<br>11050 | 165<br>163          | 58<br>59.6            | 55.3<br>56.8  | 16.36<br>17.18   | 9.4<br>9.2   | 165<br>163              | 58<br>59.6      | 55.3<br>56.8  | 16.36<br>17.18 | 8.6<br>8.4   | 111.6<br>113.0 | 117.5<br>119.0   |
| D3               | 54        | 33000           | 11550                | 28050          | 254                 | 63.5                  | 60            | 13.78            | 13.6         | 254                     | 63.5            | 60            | 13.78          | 12.5         | 89.8           | 94.5             |
| D4               | 55        | 21000           | 7350                 | 17850          | 202                 | 61.5                  | 58.5          | 14.85            | 11.2         | 202                     | 61.5            | 58.5          | 14.85          | 10.2         | 100.8          | 106.2            |
| D5               | 49S       | 33000           | 11550                | 28050          | 301                 | 83.8                  | 75.5          | 27.57            | 14.0         | 301                     | 83.8            | 75.5          | 27.57          | 12.9         | 88.1           | 92.8             |
| Others           | 51        | 61000           | 21350                | 51850          | 268                 | 78.4                  | 72.5          | 30.22            | 14.0         | 268                     | 78.4            | 70.3          | 30.22          | 10.6         | 98.8           | 104.1            |
|                  | 1         | 8512<br>10000   | 2979<br>3500         | 7235<br>8500   | 152<br>144          | 69.5<br>67.3          | 67.4<br>65.7  | 13.82<br>11.11   | 9.3<br>9.1   | 152<br>144              | 69.5<br>67.3    | 67.4<br>65.7  | 13.82<br>11.11 | 8.5<br>8.3   | 111.9<br>113.7 | 117.9<br>119.7   |
|                  | 3<br>4    | 11000<br>16000  | 3850<br>5600         | 9350<br>13600  | 157<br>200          | 65.5<br>64            | 63.8<br>61.5  | 10.83<br>12.50   | 9.9<br>11.8  | 157<br>200              | 65.5<br>64      | 63.8<br>61.5  | 10.83<br>12.50 | 9.0<br>10.8  | 108.4<br>97.8  | 114.1<br>103.0   |
|                  | 5<br>6    | 19000<br>25000  | 6650<br>8750         | 16150<br>21250 | 231<br>257          | 61.6<br>60            | 59.5<br>57.8  | 9.09<br>8.56     | 14.2<br>15.6 | 231<br>257              | 61.6<br>60      | 59.5<br>57.8  | 9.09<br>8.56   | 13.0<br>14.3 | 87.5<br>83.0   | 92.2<br>87.4     |
|                  | 7         | 25000<br>18000  | 8750<br>6300         | 21250<br>15300 | 267<br>253          | 58<br>57.5            | 54<br>54      | 14.98<br>13.83   | 14.5<br>14.4 | 267<br>253              | 58<br>57.5      | 54<br>54      | 14.98<br>13.83 | 13.2<br>13.2 | 86.6<br>86.9   | 91.2<br>91.5     |
|                  | 9         | 40000           | 14000                | 34000          | 207 291             | 57.2                  | 54            | 16.43            | 11.2<br>16.0 | 207<br>291              | 57.2            | 54            | 16.43          | 10.2         | 100.8<br>81.7  | 106.2<br>86.0    |
|                  | 19        | 34000           | 11900                | 28900          | 267                 | 61                    | 58.2<br>66.5  | 10.49            | 15.1         | 267                     | 61<br>70        | 58.2          | 10.49          | 13.8         | 84.6           | 89.1<br>90.2     |
|                  | 53        | 40000           | 14000                | 34000          | 296                 | 67.5                  | 63.5          | 13.51            | 15.6         | 296                     | 67.5            | 63.5          | 13.51          | 14.3         | 82.8           | 87.2             |
| Runoff Coe       | ficients  |                 |                      |                |                     |                       |               |                  |              |                         |                 |               |                |              |                |                  |
| Hardstand        | ind       | 0.35            |                      |                |                     |                       |               |                  | 100wr 4      | RI Rainfall             |                 |               |                |              |                |                  |
| Event            |           | Duration (mins) | Intensity<br>(mm/hr) |                |                     |                       |               |                  | 100317       |                         |                 |               |                |              |                |                  |
| 1 min<br>2 min   |           | 1 2             | 257.40<br>210.00     |                | 450.00 T            |                       |               |                  |              |                         |                 |               |                |              |                |                  |
| 3 min<br>4 min   |           | 3<br>4          | 192.40<br>178.50     |                | 400.00              |                       |               |                  |              |                         |                 |               |                |              |                |                  |
| 5 min<br>10 min  |           | 5<br>10         | 166.80<br>124.80     |                | 350.00 -            |                       |               |                  |              |                         |                 |               |                |              |                |                  |
| 15 min<br>20 min |           | 15<br>20        | 100.40<br>84.60      |                | _ 300.00 -          |                       |               |                  |              |                         |                 |               |                |              |                |                  |
| 25 min           |           | 25              | 73.68                |                | 4 260 00            |                       |               |                  |              |                         |                 |               |                |              |                |                  |
| 45 min           |           | 45              | 50.53                |                | € 200.00            |                       |               |                  | y = 412      | .16x <sup>-0.5837</sup> |                 |               |                |              |                |                  |
| 1 hr<br>1.5 hr   |           | 60<br>90        | 42.10<br>32.73       |                | is 200.00           |                       |               |                  |              |                         |                 |               |                |              |                |                  |
| 2 hr<br>3 hr     |           | 120<br>180      | 27.55<br>21.73       |                | <sup>⊆</sup> 150.00 |                       |               |                  |              |                         |                 |               |                |              |                |                  |
| 4.5 hr<br>6 hr   |           | 270             | 17.24                |                | 100.00              |                       |               |                  |              |                         |                 |               |                |              |                |                  |
| 9 hr             |           | 540             | 11.44                |                | 50.00               | L                     |               |                  |              |                         |                 |               |                | ]            |                |                  |
| 12 nr<br>18 hr   |           | 720<br>1080     | 9.50<br>7.17         |                | 0.00                | And the second second |               |                  | ·            |                         |                 |               |                |              |                |                  |
| 24 hr<br>30 hr   |           | 1440<br>1800    | 5.75<br>4.77         |                | 0.00 +              | 500                   | 1000          | 1500             | 2000         | 2500                    | 3000 35         | 00 40         | 00 4500        | 5000         |                |                  |
| 36 hr<br>48 hr   |           | 2160<br>2880    | 4.08<br>3.17         |                |                     |                       |               |                  |              | Duration (min)          |                 |               |                |              |                |                  |
| 72 hr            |           | 4320            | 2.19                 |                |                     |                       |               |                  |              |                         |                 |               |                |              |                |                  |

100 YEAR ARI DRAINAGE PROPERTIES - LOTS

100 YEAR ARI FLOWS - LOTS

|                |            |            |            |           |            |            |            |           |              | A          | .1         |           |            |            |            |           |            |            |             |            |
|----------------|------------|------------|------------|-----------|------------|------------|------------|-----------|--------------|------------|------------|-----------|------------|------------|------------|-----------|------------|------------|-------------|------------|
| Storm Duration |            |            |            |           |            |            |            |           |              |            |            |           |            |            | -          |           |            |            |             |            |
| (mins)         |            |            | 14         |           |            | 1          | 15         |           |              | 10         | 5          |           | -          | 4          | 2          | -         |            | _          | 45          |            |
|                | Pre-Dev    | Post-Dev   | Excess     | Storage   | Pre-Dev    | Post-Dev   | Excess     | Storage   | Pre-Dev Flow | Post-Dev   | Excess     | Storage   | Pre-Dev    | Post-Dev   | Excess     | Storage   | Pre-Dev    | Post-Dev   | Excess Flow | Storage    |
|                | Flow (I/s) | Flow (I/s) | Flow (I/s) | (m3)      | Flow (I/s) | Flow (I/s) | Flow (I/s) | (m3)      | (I/s)        | Flow (I/s) | Flow (I/s) | (m3)      | Flow (I/s) | Flow (I/s) | Flow (I/s) | (m3)      | Flow (I/s) | Flow (I/s) | (I/s)       | (m3)       |
| 1              | 205.81     | 1215.50    | 1009.69    | -35.80    | 196.81     | 1215.50    | 1018.69    | -39.27    | 196.60       | 1215.50    | 1018.90    | -39.35    | 214.70     | 1337.05    | 1122.35    | -43.92    | 525.97     | 4618.90    | 4092.93     | -272.88    |
| 2              | 205.81     | 991.67     | 785.85     | 2.36      | 196.81     | 991.67     | 794.85     | -0.63     | 196.60       | 991.67     | 795.07     | -0.70     | 214.70     | 1090.83    | 876.13     | -1.32     | 525.97     | 3768.33    | 3242.37     | -114.33    |
| 3              | 205.81     | 908.56     | 702.74     | 36.75     | 196.81     | 908.56     | 711.74     | 34.28     | 196.60       | 908.56     | 711.96     | 34.21     | 214.70     | 999.41     | 784.71     | 37.18     | 525.97     | 3452.51    | 2926.55     | 30.83      |
| 4              | 205.81     | 842.92     | 637.10     | 65.21     | 196.81     | 842.92     | 646.10     | 63.25     | 196.60       | 842.92     | 646.32     | 63.20     | 214.70     | 927.21     | 712.51     | 69.15     | 525.97     | 3203.08    | 2677.12     | 153.50     |
| 5              | 205.81     | 787.67     | 581.85     | 88.85     | 196.81     | 787.67     | 590.85     | 87.40     | 196.60       | 787.67     | 591.07     | 87.36     | 214.70     | 866.43     | 651.73     | 95.82     | 525.97     | 2993.13    | 2467.17     | 257.88     |
| 10             | 205.81     | 589.33     | 383.52     | 154.61    | 196.81     | 589.33     | 392.52     | 155.73    | 196.60       | 589.33     | 392.74     | 155.75    | 214.70     | 648.27     | 433.56     | 171.49    | 525.97     | 2239.47    | 1713.50     | 580.43     |
| 15             | 205.81     | 474.11     | 268.30     | 175.81    | 196.81     | 474.11     | 277.30     | 179.51    | 196.60       | 474.11     | 277.51     | 179.59    | 214.70     | 521.52     | 306.82     | 198.16    | 525.97     | 1801.62    | 1275.66     | 733.82     |
| 20             | 205.81     | 399.50     | 193.69     | 176.17    | 196.81     | 399.50     | 202.69     | 182.45    | 196.60       | 399.50     | 202.90     | 182.60    | 214.70     | 439.45     | 224.75     | 201.91    | 525.97     | 1518.10    | 992.13      | 808.19     |
| 25             | 205.81     | 347.93     | 142.12     | 165.79    | 196.81     | 347.93     | 151.12     | 174.65    | 196.60       | 347.93     | 151.34     | 174.86    | 214.70     | 382.73     | 168.02     | 193.85    | 525.97     | 1322.15    | 796.18      | 841.94     |
| 30             | 205.81     | 309.78     | 103.97     | 148.20    | 196.81     | 309.78     | 112.97     | 159.66    | 196.60       | 309.78     | 113.18     | 159.93    | 214.70     | 340.76     | 126.05     | 177.86    | 525.97     | 1177.16    | 651.19      | 848.48     |
| 45             | 205.81     | 238.63     | 32.82      | 72.65     | 196.81     | 238.63     | 41.82      | 91.92     | 196.60       | 238.63     | 42.03      | 92.37     | 214.70     | 262.49     | 47.79      | 104.90    | 525.97     | 906.79     | 380.83      | 782.51     |
| 60             | 205.81     | 198.81     | -7.01      | -21.13    | 196.81     | 198.81     | 1.99       | 5.97      | 196.60       | 198.81     | 2.21       | 6.62      | 214.70     | 218.69     | 3.98       | 11.93     | 525.97     | 755.46     | 229.50      | 648.45     |
| 90             | 205.81     | 154.57     | -51.24     | -238.22   | 196.81     | 154.57     | -42.24     | -195.36   | 196.60       | 154.57     | -42.02     | -194.33   | 214.70     | 170.03     | -44.67     | -206.40   | 525.97     | 587.38     | 61.42       | 270.47     |
| 120            | 205.81     | 130.10     | -75.71     | -477.62   | 196.81     | 130.10     | -66.72     | -418.92   | 196.60       | 130.10     | -66.50     | -417.52   | 214.70     | 143.11     | -71.60     | -449.18   | 525.97     | 494.37     | -31.60      | -190.10    |
| 180            | 205.81     | 102.63     | -103.18    | -997.72   | 196.81     | 102.63     | -94.18     | -907.25   | 196.60       | 102.63     | -93.97     | -905.09   | 214.70     | 112.89     | -101.81    | -980.02   | 525.97     | 389.99     | -135.97     | -1264.52   |
| 270            | 205.81     | 81.43      | -124.38    | -1837.73  | 196.81     | 81.43      | -115.38    | -1699.44  | 196.60       | 81.43      | -115.16    | -1696.14  | 214.70     | 89.58      | -125.13    | -1841.91  | 525.97     | 309.44     | -216.52     | -3098.29   |
| 360            | 205.81     | 69.02      | -136.79    | -2724.70  | 196.81     | 69.02      | -127.79    | -2538.48  | 196.60       | 69.02      | -127.57    | -2534.03  | 214.70     | 75.93      | -138.78    | -2755.32  | 525.97     | 262.29     | -263.68     | -5107.26   |
| 540            | 205.81     | 54.04      | -151.77    | -4591.47  | 196.81     | 54.04      | -142.77    | -4309.28  | 196.60       | 54.04      | -142.55    | -4302.53  | 214.70     | 59.45      | -155.26    | -4684.11  | 525.97     | 205.36     | -320.60     | -9474.10   |
| 720            | 205.81     | 44.86      | -160.95    | -6536.80  | 196.81     | 44.86      | -151.95    | -6158.57  | 196.60       | 44.86      | -151.74    | -6149.52  | 214.70     | 49.35      | -165.36    | -6699.21  | 525.97     | 170.47     | -355.49     | -14137.23  |
| 1080           | 205.81     | 33.84      | -171.97    | -10554.03 | 196.81     | 33.84      | -162.97    | -9983.62  | 196.60       | 33.84      | -162.75    | -9969.98  | 214.70     | 37.23      | -177.48    | -10868.53 | 525.97     | 128.60     | -397.36     | -23941.36  |
| 1440           | 205.81     | 27.15      | -178.66    | -14672.72 | 196.81     | 27.15      | -169.66    | -13910.14 | 196.60       | 27.15      | -169.44    | -13891.90 | 214.70     | 29.87      | -184.83    | -15149.47 | 525.97     | 103.18     | -422.79     | -34131.26  |
| 1800           | 205.81     | 22.51      | -183.30    | -18851.83 | 196.81     | 22.51      | -174.30    | -17897.18 | 196.60       | 22.51      | -174.09    | -17874.34 | 214.70     | 24.76      | -189.94    | -19496.99 | 525.97     | 85.54      | -440.43     | -44553.86  |
| 2160           | 205.81     | 19.28      | -186.53    | -23051.83 | 196.81     | 19.28      | -177.53    | -21905.06 | 196.60       | 19.28      | -177.31    | -21877.62 | 214.70     | 21.21      | -193.49    | -23867.43 | 525.97     | 73.27      | -452.69     | -55054.25  |
| 2880           | 205.81     | 14.95      | -190.86    | -31499.41 | 196.81     | 14.95      | -181.86    | -29968.44 | 196.60       | 14.95      | -181.64    | -29931.81 | 214.70     | 16.45      | -198.25    | -32660.71 | 525.97     | 56.82      | -469.14     | -76237.24  |
| 4320           | 205.81     | 10.36      | -195.45    | -48472.06 | 196.81     | 10.36      | -186.45    | -46172.57 | 196.60       | 10.36      | -186.23    | -46117.55 | 214.70     | 11.40      | -203.30    | -50332.33 | 525.97     | 39.38      | -486.59     | -118893.80 |
| Volume check   |            |            |            | ok        |            |            |            | ok        |              |            |            | ok        |            |            |            | ok        |            |            |             | ok         |

|                |            |            |            |           |            |            |            |           | A2           |            |            |           |            |            |            |           |
|----------------|------------|------------|------------|-----------|------------|------------|------------|-----------|--------------|------------|------------|-----------|------------|------------|------------|-----------|
| Storm Duration |            |            |            |           |            |            |            |           |              |            |            |           |            |            |            |           |
| (mins)         |            | 1          | 10         |           |            | 1          | 1          |           |              | 12         |            |           |            | 1          | 3          |           |
|                | Pre-Dev    | Post-Dev   | Excess     | Storage   | Pre-Dev    | Post-Dev   | Excess     | Storage   | Pre-Dev Flow | Post-Dev   | Excess     | Storage   | Pre-Dev    | Post-Dev   | Excess     | Storage   |
|                | Flow (I/S) | Flow (I/S) | Flow (I/S) | (m3)      | Flow (I/s) | Flow (I/S) | Flow (I/S) | (m3)      | (I/S)        | Flow (I/S) | Flow (I/S) | (m3)      | Flow (I/s) | Flow (I/S) | Flow (I/S) | (m3)      |
| 1              | 125.16     | 729.30     | 604.14     | -20.87    | 133.65     | 790.08     | 656.43     | -23.32    | 156.51       | 972.40     | 815.89     | -31.79    | 168.78     | 1033.18    | 864.40     | -32.78    |
| 2              | 125.16     | 595.00     | 469.84     | 1.93      | 133.65     | 644.58     | 510.94     | 1.49      | 156.51       | 793.33     | 636.82     | -0.83     | 168.78     | 842.92     | 674.14     | -0.02     |
| 3              | 125.16     | 545.13     | 419.98     | 22.48     | 133.65     | 590.56     | 456.92     | 23.85     | 156.51       | 726.84     | 570.33     | 27.15     | 168.78     | 772.27     | 603.49     | 29.57     |
| 4              | 125.16     | 505.75     | 380.59     | 39.45     | 133.65     | 547.90     | 414.25     | 42.36     | 156.51       | 674.33     | 517.82     | 50.38     | 168.78     | 716.48     | 547.70     | 54.11     |
| 5              | 125.16     | 472.60     | 347.44     | 53.54     | 133.65     | 511.98     | 378.34     | 57.73     | 156.51       | 630.13     | 473.62     | 69.75     | 168.78     | 669.52     | 500.74     | 74.55     |
| 10             | 125.16     | 353.60     | 228.44     | 92.52     | 133.65     | 383.07     | 249.42     | 100.51    | 156.51       | 471.47     | 314.96     | 124.68    | 168.78     | 500.93     | 332.16     | 132.21    |
| 15             | 125.16     | 284.47     | 159.31     | 104.76    | 133.65     | 308.17     | 174.53     | 114.33    | 156.51       | 379.29     | 222.78     | 143.97    | 168.78     | 402.99     | 234.22     | 151.99    |
| 20             | 125.16     | 239.70     | 114.54     | 104.50    | 133.65     | 259.68     | 126.03     | 114.61    | 156.51       | 319.60     | 163.09     | 146.60    | 168.78     | 339.58     | 170.80     | 154.07    |
| 25             | 125.16     | 208.76     | 83.60      | 97.79     | 133.65     | 226.16     | 92.51      | 107.90    | 156.51       | 278.35     | 121.84     | 140.63    | 168.78     | 295.74     | 126.97     | 147.01    |
| 30             | 125.16     | 185.87     | 60.71      | 86.76     | 133.65     | 201.36     | 67.71      | 96.50     | 156.51       | 247.82     | 91.31      | 128.90    | 168.78     | 263.31     | 94.53      | 133.84    |
| 45             | 125.16     | 143.18     | 18.02      | 39.98     | 133.65     | 155.11     | 21.46      | 47.51     | 156.51       | 190.90     | 34.39      | 75.52     | 168.78     | 202.84     | 34.06      | 74.97     |
| 60             | 125.16     | 119.28     | -5.87      | -17.75    | 133.65     | 129.22     | -4.42      | -13.34    | 156.51       | 159.04     | 2.53       | 7.59      | 168.78     | 168.98     | 0.21       | 0.62      |
| 90             | 125.16     | 92.74      | -32.41     | -150.93   | 133.65     | 100.47     | -33.17     | -154.21   | 156.51       | 123.66     | -32.85     | -151.83   | 168.78     | 131.39     | -37.39     | -173.12   |
| 120            | 125.16     | 78.06      | -47.10     | -297.51   | 133.65     | 84.56      | -49.08     | -309.59   | 156.51       | 104.08     | -52.43     | -329.03   | 168.78     | 110.58     | -58.20     | -365.76   |
| 180            | 125.16     | 61.58      | -63.58     | -615.47   | 133.65     | 66.71      | -66.94     | -647.18   | 156.51       | 82.10      | -74.41     | -716.38   | 168.78     | 87.24      | -81.54     | -786.09   |
| 270            | 125.16     | 48.86      | -76.30     | -1128.36  | 133.65     | 52.93      | -80.71     | -1192.49  | 156.51       | 65.15      | -91.36     | -1345.14  | 168.78     | 69.22      | -99.56     | -1467.36  |
| 360            | 125.16     | 41.41      | -83.74     | -1669.43  | 133.65     | 44.87      | -88.78     | -1768.31  | 156.51       | 55.22      | -101.29    | -2011.37  | 168.78     | 58.67      | -110.11    | -2188.46  |
| 540            | 125.16     | 32.43      | -92.73     | -2807.32  | 133.65     | 35.13      | -98.52     | -2980.30  | 156.51       | 43.23      | -113.28    | -3417.99  | 168.78     | 45.94      | -122.84    | -3709.51  |
| 720            | 125.16     | 26.92      | -98.24     | -3992.34  | 133.65     | 29.16      | -104.49    | -4243.35  | 156.51       | 35.89      | -120.62    | -4887.40  | 168.78     | 38.13      | -130.65    | -5297.28  |
| 1080           | 125.16     | 20.31      | -104.85    | -6438.36  | 133.65     | 22.00      | -111.65    | -6851.72  | 156.51       | 27.07      | -129.44    | -7927.38  | 168.78     | 28.77      | -140.01    | -8580.34  |
| 1440           | 125.16     | 16.29      | -108.87    | -8945.25  | 133.65     | 17.65      | -116.00    | -9526.05  | 156.51       | 21.72      | -134.79    | -11048.54 | 168.78     | 23.08      | -145.70    | -11949.64 |
| 1800           | 125.16     | 13.51      | -111.65    | -11488.38 | 133.65     | 14.63      | -119.01    | -12239.64 | 156.51       | 18.01      | -138.50    | -14218.12 | 168.78     | 19.13      | -149.65    | -15370.37 |
| 2160           | 125.16     | 11.57      | -113.59    | -14044.05 | 133.65     | 12.53      | -121.11    | -14966.82 | 156.51       | 15.43      | -141.08    | -17404.37 | 168.78     | 16.39      | -152.39    | -18808.83 |
| 2880           | 125.16     | 8.97       | -116.19    | -19183.93 | 133.65     | 9.72       | -123.93    | -20452.09 | 156.51       | 11.96      | -144.55    | -23814.97 | 168.78     | 12.71      | -156.07    | -25726.20 |
| 4320           | 125.16     | 6.22       | -118.94    | -29510.20 | 133.65     | 6.74       | -126.91    | -31473.01 | 156.51       | 8.29       | -148.22    | -36698.05 | 168.78     | 8.81       | -159.97    | -39626.74 |
| Volume check   |            |            |            | ok        |            |            |            | ok        |              |            |            | ok        |            |            |            | ok        |

|                |            |            |            | 4         | 43         |            |            |           |              | A          | 4          | ,          |
|----------------|------------|------------|------------|-----------|------------|------------|------------|-----------|--------------|------------|------------|------------|
| Storm Duration |            |            |            |           |            |            |            |           |              |            |            |            |
| (mins)         |            |            | 43         |           |            | 4          | 14         |           |              | 46         | 5          |            |
|                | Pre-Dev    | Post-Dev   | Excess     | Storage   | Pre-Dev    | Post-Dev   | Excess     | Storage   | Pre-Dev Flow | Post-Dev   | Excess     | Storage    |
|                | Flow (I/s) | Flow (I/s) | Flow (I/s) | (m3)      | Flow (I/s) | Flow (I/s) | Flow (I/s) | (m3)      | (l/s)        | Flow (I/s) | Flow (I/s) | (m3)       |
| 1              | 154.96     | 911.63     | 756.66     | -26.63    | 134.71     | 790.08     | 655.36     | -22.93    | 813.96       | 7049.90    | 6235.94    | -408.01    |
| 2              | 154.96     | 743.75     | 588.79     | 1.96      | 134.71     | 644.58     | 509.87     | 1.83      | 813.96       | 5751.67    | 4937.70    | -166.60    |
| 3              | 154.96     | 681.42     | 526.45     | 27.72     | 134.71     | 590.56     | 455.85     | 24.13     | 813.96       | 5269.62    | 4455.66    | 54.34      |
| 4              | 154.96     | 632.19     | 477.23     | 49.03     | 134.71     | 547.90     | 413.18     | 42.57     | 813.96       | 4888.92    | 4074.95    | 240.95     |
| 5              | 154.96     | 590.75     | 435.79     | 66.72     | 134.71     | 511.98     | 377.27     | 57.88     | 813.96       | 4568.47    | 3754.50    | 399.64     |
| 10             | 154.96     | 442.00     | 287.04     | 115.87    | 134.71     | 383.07     | 248.35     | 100.36    | 813.96       | 3418.13    | 2604.17    | 888.81     |
| 15             | 154.96     | 355.58     | 200.62     | 131.60    | 134.71     | 308.17     | 173.46     | 113.87    | 813.96       | 2749.84    | 1935.88    | 1119.78    |
| 20             | 154.96     | 299.63     | 144.66     | 131.70    | 134.71     | 259.68     | 124.96     | 113.84    | 813.96       | 2317.10    | 1503.14    | 1230.13    |
| 25             | 154.96     | 260.95     | 105.99     | 123.74    | 134.71     | 226.16     | 91.44      | 106.82    | 813.96       | 2018.01    | 1204.05    | 1278.48    |
| 30             | 154.96     | 232.33     | 77.37      | 110.37    | 134.71     | 201.36     | 66.64      | 95.12     | 813.96       | 1796.71    | 982.75     | 1285.28    |
| 45             | 154.96     | 178.97     | 24.01      | 53.19     | 134.71     | 155.11     | 20.40      | 45.20     | 813.96       | 1384.05    | 570.09     | 1175.02    |
| 60             | 154.96     | 149.10     | -5.86      | -17.68    | 134.71     | 129.22     | -5.49      | -16.57    | 813.96       | 1153.07    | 339.11     | 960.74     |
| 90             | 154.96     | 115.93     | -39.03     | -181.55   | 134.71     | 100.47     | -34.24     | -159.32   | 813.96       | 896.53     | 82.57      | 364.43     |
| 120            | 154.96     | 97.57      | -57.39     | -362.16   | 134.71     | 84.56      | -50.15     | -316.58   | 813.96       | 754.56     | -59.40     | -358.06    |
| 180            | 154.96     | 76.97      | -77.99     | -754.36   | 134.71     | 66.71      | -68.00     | -657.94   | 813.96       | 595.25     | -218.71    | -2037.17   |
| 270            | 154.96     | 61.07      | -93.89     | -1387.58  | 134.71     | 52.93      | -81.78     | -1208.93  | 813.96       | 472.31     | -341.66    | -4895.17   |
| 360            | 154.96     | 51.77      | -103.19    | -2056.02  | 134.71     | 44.87      | -89.85     | -1790.44  | 813.96       | 400.33     | -413.63    | -8020.73   |
| 540            | 154.96     | 40.53      | -114.43    | -3462.53  | 134.71     | 35.13      | -99.59     | -3013.82  | 813.96       | 313.45     | -500.51    | -14804.60  |
| 720            | 154.96     | 33.65      | -121.32    | -4927.96  | 134.71     | 29.16      | -105.55    | -4288.27  | 813.96       | 260.19     | -553.77    | -22040.80  |
| 1080           | 154.96     | 25.38      | -129.58    | -7953.76  | 134.71     | 22.00      | -112.72    | -6919.46  | 813.96       | 196.29     | -617.67    | -37242.74  |
| 1440           | 154.96     | 20.36      | -134.60    | -11055.65 | 134.71     | 17.65      | -117.06    | -9616.59  | 813.96       | 157.49     | -656.48    | -53033.50  |
| 1800           | 154.96     | 16.88      | -138.08    | -14202.86 | 134.71     | 14.63      | -120.08    | -12352.98 | 813.96       | 130.55     | -683.41    | -69179.25  |
| 2160           | 154.96     | 14.46      | -140.50    | -17365.73 | 134.71     | 12.53      | -122.18    | -15102.96 | 813.96       | 111.84     | -702.12    | -85443.83  |
| 2880           | 154.96     | 11.22      | -143.75    | -23727.17 | 134.71     | 9.72       | -124.99    | -20633.85 | 813.96       | 86.73      | -727.23    | -118251.02 |
| 4320           | 154.96     | 7.77       | -147.19    | -36508.16 | 134.71     | 6.74       | -127.98    | -31745.99 | 813.96       | 60.10      | -753.86    | -184309.11 |
| Volume check   |            |            |            | ok        |            |            |            | ok        |              |            |            | ok         |

|                          |                       |                        |                      |                 |                       |                        | A5                   |                 |                       |                        |                      |                 |                       | c                      | :1                   |                 |
|--------------------------|-----------------------|------------------------|----------------------|-----------------|-----------------------|------------------------|----------------------|-----------------|-----------------------|------------------------|----------------------|-----------------|-----------------------|------------------------|----------------------|-----------------|
| Storm Duration<br>(mins) |                       | 4                      | 17                   |                 |                       | 4                      | 18                   |                 |                       | 49                     | N                    |                 |                       | 2                      | 2                    |                 |
|                          | Pre-Dev<br>Flow (I/s) | Post-Dev<br>Flow (I/s) | Excess<br>Flow (I/s) | Storage<br>(m3) | Pre-Dev<br>Flow (I/s) | Post-Dev<br>Flow (I/s) | Excess<br>Flow (I/s) | Storage<br>(m3) | Pre-Dev Flow<br>(I/s) | Post-Dev<br>Flow (I/s) | Excess<br>Flow (I/s) | Storage<br>(m3) | Pre-Dev<br>Flow (I/s) | Post-Dev<br>Flow (I/s) | Excess<br>Flow (I/s) | Storage<br>(m3) |
| 1                        | 709.03                | 5530.53                | 4821.49              | -271.94         | 537.70                | 4011.15                | 3473.45              | -183.25         | 404.60                | 2888.03                | 2483.43              | -122.35         | 248.49                | 1397.83                | 1149.33              | -37.00          |
| 2                        | 709.03                | 4512.08                | 3803.05              | -86.24          | 537.70                | 3272.50                | 2734.80              | -49.80          | 404.60                | 2356.20                | 1951.60              | -27.18          | 248.49                | 1140.42                | 891.93               | 6.24            |
| 3                        | 709.03                | 4133.93                | 3424.90              | 83.13           | 537.70                | 2998.23                | 2460.54              | 71.72           | 404.60                | 2158.73                | 1754.13              | 59.32           | 248.49                | 1044.84                | 796.35               | 45.12           |
| 4                        | 709.03                | 3835.27                | 3126.24              | 225.54          | 537.70                | 2781.63                | 2243.93              | 173.68          | 404.60                | 2002.77                | 1598.17              | 131.75          | 248.49                | 969.35                 | 720.86               | 77.17           |
| 5                        | 709.03                | 3583.88                | 2874.85              | 346.05          | 537.70                | 2599.30                | 2061.60              | 259.75          | 404.60                | 1871.50                | 1466.90              | 192.73          | 248.49                | 905.82                 | 657.33               | 103.68          |
| 10                       | 709.03                | 2681.47                | 1972.44              | 709.92          | 537.70                | 1944.80                | 1407.10              | 517.02          | 404.60                | 1400.26                | 995.66               | 373.01          | 248.49                | 677.73                 | 429.24               | 175.92          |
| 15                       | 709.03                | 2157.21                | 1448.18              | 871.18          | 537.70                | 1564.57                | 1026.87              | 627.33          | 404.60                | 1126.49                | 721.89               | 447.48          | 248.49                | 545.23                 | 296.74               | 196.92          |
| 20                       | 709.03                | 1817.73                | 1108.69              | 937.78          | 537.70                | 1318.35                | 780.65               | 668.96          | 404.60                | 949.21                 | 544.61               | 472.48          | 248.49                | 459.43                 | 210.93               | 193.95          |
| 25                       | 709.03                | 1583.10                | 874.07               | 955.66          | 537.70                | 1148.18                | 610.48               | 675.24          | 404.60                | 826.69                 | 422.09               | 472.02          | 248.49                | 400.12                 | 151.63               | 178.61          |
| 30                       | 709.03                | 1409.49                | 700.46               | 940.90          | 537.70                | 1022.27                | 484.57               | 657.83          | 404.60                | 736.03                 | 331.43               | 454.48          | 248.49                | 356.24                 | 107.75               | 154.98          |
| 45                       | 709.03                | 1085.76                | 376.73               | 793.81          | 537.70                | 787.48                 | 249.78               | 530.95          | 404.60                | 566.98                 | 162.38               | 348.06          | 248.49                | 274.42                 | 25.93                | 57.84           |
| 60                       | 709.03                | 904.57                 | 195.53               | 564.77          | 537.70                | 656.06                 | 118.36               | 344.50          | 404.60                | 472.36                 | 67.76                | 198.68          | 248.49                | 228.63                 | -19.86               | -60.31          |
| 90                       | 709.03                | 703.31                 | -5.72                | -25.65          | 537.70                | 510.09                 | -27.60               | -124.58         | 404.60                | 367.27                 | -37.33               | -169.51         | 248.49                | 177.76                 | -70.73               | -330.67         |
| 120                      | 709.03                | 591.94                 | -117.09              | -715.70         | 537.70                | 429.32                 | -108.38              | -666.13         | 404.60                | 309.11                 | -95.49               | -590.03         | 248.49                | 149.61                 | -98.88               | -626.76         |
| 180                      | 709.03                | 466.96                 | -242.07              | -2280.59        | 537.70                | 338.68                 | -199.02              | -1883.62        | 404.60                | 243.85                 | -160.75              | -1528.09        | 248.49                | 118.02                 | -130.47              | -1266.58        |
| 270                      | 709.03                | 370.52                 | -338.51              | -4895.77        | 537.70                | 268.73                 | -268.97              | -3904.62        | 404.60                | 193.48                 | -211.12              | -3075.77        | 248.49                | 93.65                  | -154.84              | -2295.38        |
| 360                      | 709.03                | 314.06                 | -394.98              | -7721.82        | 537.70                | 227.78                 | -309.92              | -6078.88        | 404.60                | 164.00                 | -240.60              | -4734.01        | 248.49                | 79.38                  | -169.11              | -3378.30        |
| 540                      | 709.03                | 245.90                 | -463.13              | -13793.03       | 537.70                | 178.34                 | -359.35              | -10731.72       | 404.60                | 128.41                 | -276.19              | -8269.89        | 248.49                | 62.15                  | -186.34              | -5651.05        |
| 720                      | 709.03                | 204.12                 | -504.91              | -20219.78       | 537.70                | 148.04                 | -389.65              | -15642.64       | 404.60                | 106.59                 | -298.01              | -11991.74       | 248.49                | 51.59                  | -196.90              | -8014.24        |
| 1080                     | 709.03                | 153.98                 | -555.05              | -33646.52       | 537.70                | 111.68                 | -426.02              | -25880.54       | 404.60                | 80.41                  | -324.19              | -19735.21       | 248.49                | 38.92                  | -209.57              | -12886.29       |
| 1440                     | 709.03                | 123.55                 | -585.49              | -47535.10       | 537.70                | 89.60                  | -448.09              | -36453.37       | 404.60                | 64.52                  | -340.08              | -27719.83       | 248.49                | 31.23                  | -217.27              | -17875.01       |
| 1800                     | 709.03                | 102.42                 | -606.61              | -61701.23       | 537.70                | 74.28                  | -463.42              | -47227.22       | 404.60                | 53.48                  | -351.12              | -35848.95       | 248.49                | 25.89                  | -222.61              | -22933.10       |
| 2160                     | 709.03                | 87.73                  | -621.30              | -75961.06       | 537.70                | 63.63                  | -474.06              | -58069.17       | 404.60                | 45.82                  | -358.78              | -44027.22       | 248.49                | 22.17                  | -226.32              | -28015.27       |
| 2880                     | 709.03                | 68.04                  | -640.99              | -104698.41      | 537.70                | 49.35                  | -488.35              | -79910.83       | 404.60                | 35.53                  | -369.07              | -60497.25       | 248.49                | 17.20                  | -231.29              | -38234.27       |
| 4320                     | 709.03                | 47.15                  | -661.88              | -162522.37      | 537.70                | 34.20                  | -503.50              | -123847.82      | 404.60                | 24.62                  | -379.98              | -93620.23       | 248.49                | 11.92                  | -236.57              | -58761.55       |
| Volume check             | •                     |                        |                      | ok              | •                     |                        |                      | ok              |                       |                        |                      | ok              | •                     |                        |                      | ok              |

|                |            |            |            | c         | 2          |            |            |           |              |            |            |           |            | c          | 3          |           |            |            |             |           |
|----------------|------------|------------|------------|-----------|------------|------------|------------|-----------|--------------|------------|------------|-----------|------------|------------|------------|-----------|------------|------------|-------------|-----------|
| Storm Duration |            |            |            |           |            |            |            |           |              |            |            |           |            |            |            |           |            |            |             |           |
| (mins)         |            | 2          | 23         |           |            | :          | 24         |           |              | 20         | )          |           |            | 2          | :1         |           |            |            | 32          |           |
|                | Pre-Dev    | Post-Dev   | Excess     | Storage   | Pre-Dev    | Post-Dev   | Excess     | Storage   | Pre-Dev Flow | Post-Dev   | Excess     | Storage   | Pre-Dev    | Post-Dev   | Excess     | Storage   | Pre-Dev    | Post-Dev   | Excess Flow | Storage   |
|                | Flow (I/s) | Flow (I/s) | Flow (I/s) | (m3)      | Flow (I/s) | Flow (I/s) | Flow (I/s) | (m3)      | (l/s)        | Flow (I/s) | Flow (I/s) | (m3)      | Flow (I/s) | Flow (I/s) | Flow (I/s) | (m3)      | Flow (I/s) | Flow (I/s) | (l/s)       | (m3)      |
| 1              | 130.84     | 729.30     | 598.46     | -18.91    | 142.65     | 790.08     | 647.42     | -20.19    | 147.80       | 911.63     | 763.83     | -29.37    | 149.63     | 911.63     | 762.00     | -28.65    | 156.88     | 911.63     | 754.75      | -25.93    |
| 2              | 130.84     | 595.00     | 464.16     | 3.59      | 142.65     | 644.58     | 501.93     | 4.14      | 147.80       | 743.75     | 595.95     | -0.41     | 149.63     | 743.75     | 594.12     | 0.22      | 156.88     | 743.75     | 586.87      | 2.55      |
| 3              | 130.84     | 545.13     | 414.29     | 23.81     | 142.65     | 590.56     | 447.91     | 25.99     | 147.80       | 681.42     | 533.62     | 25.76     | 149.63     | 681.42     | 531.79     | 26.29     | 156.88     | 681.42     | 524.54      | 28.20     |
| 4              | 130.84     | 505.75     | 374.91     | 40.46     | 142.65     | 547.90     | 405.24     | 43.98     | 147.80       | 632.19     | 484.39     | 47.48     | 149.63     | 632.19     | 482.56     | 47.90     | 156.88     | 632.19     | 475.31      | 49.40     |
| 5              | 130.84     | 472.60     | 341.76     | 54.22     | 142.65     | 511.98     | 369.33     | 58.83     | 147.80       | 590.75     | 442.95     | 65.59     | 149.63     | 590.75     | 441.12     | 65.90     | 156.88     | 590.75     | 433.87      | 66.99     |
| 10             | 130.84     | 353.60     | 222.76     | 91.57     | 142.65     | 383.07     | 240.41     | 99.04     | 147.80       | 442.00     | 294.20     | 116.78    | 149.63     | 442.00     | 292.37     | 116.57    | 156.88     | 442.00     | 285.12      | 115.58    |
| 15             | 130.84     | 284.47     | 153.62     | 102.19    | 142.65     | 308.17     | 165.52     | 110.28    | 147.80       | 355.58     | 207.79     | 134.56    | 149.63     | 355.58     | 205.96     | 133.83    | 156.88     | 355.58     | 198.70      | 130.77    |
| 20             | 130.84     | 239.70     | 108.86     | 100.29    | 142.65     | 259.68     | 117.02     | 107.96    | 147.80       | 299.63     | 151.83     | 136.71    | 149.63     | 299.63     | 150.00     | 135.46    | 156.88     | 299.63     | 142.75      | 130.31    |
| 25             | 130.84     | 208.76     | 77.92      | 91.94     | 142.65     | 226.16     | 83.50      | 98.66     | 147.80       | 260.95     | 113.15     | 130.81    | 149.63     | 260.95     | 111.32     | 129.03    | 156.88     | 260.95     | 104.07      | 121.80    |
| 30             | 130.84     | 185.87     | 55.02      | 79.27     | 142.65     | 201.36     | 58.70      | 84.66     | 147.80       | 232.33     | 84.54      | 119.51    | 149.63     | 232.33     | 82.71      | 117.20    | 156.88     | 232.33     | 75.45       | 107.88    |
| 45             | 130.84     | 143.18     | 12.33      | 27.55     | 142.65     | 155.11     | 12.46      | 27.85     | 147.80       | 178.97     | 31.17      | 68.54     | 149.63     | 178.97     | 29.35      | 64.64     | 156.88     | 178.97     | 22.09       | 49.03     |
| 60             | 130.84     | 119.28     | -11.56     | -35.14    | 142.65     | 129.22     | -13.43     | -40.86    | 147.80       | 149.10     | 1.31       | 3.92      | 149.63     | 149.10     | -0.52      | -1.57     | 156.88     | 149.10     | -7.78       | -23.51    |
| 90             | 130.84     | 92.74      | -38.10     | -178.29   | 142.65     | 100.47     | -42.18     | -197.53   | 147.80       | 115.93     | -31.87     | -147.41   | 149.63     | 115.93     | -33.70     | -156.10   | 156.88     | 115.93     | -40.95      | -190.74   |
| 120            | 130.84     | 78.06      | -52.79     | -334.88   | 142.65     | 84.56      | -58.09     | -368.76   | 147.80       | 97.57      | -50.22     | -315.42   | 149.63     | 97.57      | -52.05     | -327.32   | 156.88     | 97.57      | -59.31      | -374.72   |
| 180            | 130.84     | 61.58      | -69.27     | -672.93   | 142.65     | 66.71      | -75.94     | -738.18   | 147.80       | 76.97      | -70.83     | -682.33   | 149.63     | 76.97      | -72.65     | -700.69   | 156.88     | 76.97      | -79.91      | -773.70   |
| 270            | 130.84     | 48.86      | -81.98     | -1216.06  | 142.65     | 52.93      | -89.72     | -1331.39  | 147.80       | 61.07      | -86.72     | -1277.47  | 149.63     | 61.07      | -88.55     | -1305.55  | 156.88     | 61.07      | -95.81      | -1417.11  |
| 360            | 130.84     | 41.41      | -89.43     | -1787.43  | 142.65     | 44.87      | -97.79     | -1955.20  | 147.80       | 51.77      | -96.03     | -1907.75  | 149.63     | 51.77      | -97.86     | -1945.57  | 156.88     | 51.77      | -105.11     | -2095.76  |
| 540            | 130.84     | 32.43      | -98.42     | -2985.98  | 142.65     | 35.13      | -107.52    | -3263.30  | 147.80       | 40.53      | -107.27    | -3237.86  | 149.63     | 40.53      | -109.09    | -3295.19  | 156.88     | 40.53      | -116.35     | -3522.73  |
| 720            | 130.84     | 26.92      | -103.93    | -4231.72  | 142.65     | 29.16      | -113.49    | -4622.52  | 147.80       | 33.65      | -114.15    | -4626.84  | 149.63     | 33.65      | -115.98    | -4703.68  | 156.88     | 33.65      | -123.23     | -5008.64  |
| 1080           | 130.84     | 20.31      | -110.54    | -6799.22  | 142.65     | 22.00      | -120.66    | -7423.33  | 147.80       | 25.38      | -122.42    | -7499.65  | 149.63     | 25.38      | -124.24    | -7615.54  | 156.88     | 25.38      | -131.50     | -8075.40  |
| 1440           | 130.84     | 16.29      | -114.55    | -9427.59  | 142.65     | 17.65      | -125.00    | -10290.09 | 147.80       | 20.36      | -127.43    | -10448.56 | 149.63     | 20.36      | -129.26    | -10603.51 | 156.88     | 20.36      | -136.51     | -11218.26 |
| 1800           | 130.84     | 13.51      | -117.34    | -12092.14 | 142.65     | 14.63      | -128.02    | -13196.02 | 147.80       | 16.88      | -130.92    | -13442.86 | 149.63     | 16.88      | -132.74    | -13636.84 | 156.88     | 16.88      | -140.00     | -14406.40 |
| 2160           | 130.84     | 11.57      | -119.27    | -14769.26 | 142.65     | 12.53      | -130.12    | -16115.59 | 147.80       | 14.46      | -133.34    | -16452.79 | 149.63     | 14.46      | -135.16    | -16685.81 | 156.88     | 14.46      | -142.42     | -17610.23 |
| 2880           | 130.84     | 8.97       | -121.87    | -20152.01 | 142.65     | 9.72       | -132.93    | -21985.60 | 147.80       | 11.22      | -136.58    | -22508.36 | 149.63     | 11.22      | -138.41    | -22819.47 | 156.88     | 11.22      | -145.66     | -24053.56 |
| 4320           | 130.84     | 6.22       | -124.63    | -30964.11 | 142.65     | 6.74       | -135.92    | -33776.10 | 147.80       | 7.77       | -140.03    | -34677.54 | 149.63     | 7.77       | -141.85    | -35144.83 | 156.88     | 7.77       | -149.11     | -36998.37 |
| Volume check   |            |            |            | ok        |            |            |            | ok        |              |            |            | ok        |            |            |            | ok        |            |            |             | ok        |
|                |            |            |            |           |            |            |            |           |              |            |            |           |            |            |            |           |            |            |             |           |

|                |            |            |            |           |            |            |            |           |              | c          | 4          |            |            |            |            |           |            |            |             |            |
|----------------|------------|------------|------------|-----------|------------|------------|------------|-----------|--------------|------------|------------|------------|------------|------------|------------|-----------|------------|------------|-------------|------------|
| Storm Duration |            |            |            |           |            |            |            |           |              |            |            |            |            |            |            |           |            |            |             |            |
| (mins)         |            | 3          | 33         |           |            | 3          | 34         |           |              | 35         | 5          |            |            | 3          | 6          |           |            |            | 37          |            |
|                | Pre-Dev    | Post-Dev   | Excess     | Storage   | Pre-Dev    | Post-Dev   | Excess     | Storage   | Pre-Dev Flow | Post-Dev   | Excess     | Storage    | Pre-Dev    | Post-Dev   | Excess     | Storage   | Pre-Dev    | Post-Dev   | Excess Flow | Storage    |
|                | Flow (I/s) | Flow (I/s) | Flow (I/s) | (m3)      | Flow (I/s) | Flow (I/s) | Flow (I/s) | (m3)      | (l/s)        | Flow (I/s) | Flow (I/s) | (m3)       | Flow (I/s) | Flow (I/s) | Flow (I/s) | (m3)      | Flow (I/s) | Flow (I/s) | (l/s)       | (m3)       |
| 1              | 419.49     | 3099.53    | 2680.04    | -139.34   | 415.71     | 3038.75    | 2623.04    | -134.13   | 495.47       | 3038.75    | 2543.28    | -96.79     | 339.52     | 2491.78    | 2152.25    | -110.74   | 488.48     | 3646.50    | 3158.02     | -166.78    |
| 2              | 419.49     | 2528.75    | 2109.26    | -36.42    | 415.71     | 2479.17    | 2063.46    | -33.47    | 495.47       | 2479.17    | 1983.70    | -0.38      | 339.52     | 2032.92    | 1693.39    | -28.12    | 488.48     | 2975.00    | 2486.52     | -45.45     |
| 3              | 419.49     | 2316.82    | 1897.33    | 57.25     | 415.71     | 2271.39    | 1855.68    | 58.12     | 495.47       | 2271.39    | 1775.92    | 86.69      | 339.52     | 1862.54    | 1523.01    | 47.05     | 488.48     | 2725.67    | 2237.19     | 65.04      |
| 4              | 419.49     | 2149.44    | 1729.95    | 135.81    | 415.71     | 2107.29    | 1691.58    | 134.89    | 495.47       | 2107.29    | 1611.82    | 158.92     | 339.52     | 1727.98    | 1388.45    | 110.08    | 488.48     | 2528.75    | 2040.27     | 157.76     |
| 5              | 419.49     | 2008.55    | 1589.06    | 202.10    | 415.71     | 1969.17    | 1553.46    | 199.62    | 495.47       | 1969.17    | 1473.70    | 219.11     | 339.52     | 1614.72    | 1275.19    | 163.24    | 488.48     | 2363.00    | 1874.52     | 236.02     |
| 10             | 419.49     | 1502.80    | 1083.31    | 399.76    | 415.71     | 1473.33    | 1057.63    | 392.15    | 495.47       | 1473.33    | 977.87     | 388.95     | 339.52     | 1208.13    | 868.61     | 321.50    | 488.48     | 1768.00    | 1279.52     | 470.00     |
| 15             | 419.49     | 1208.98    | 789.49     | 483.87    | 415.71     | 1185.28    | 769.57     | 473.34    | 495.47       | 1185.28    | 689.81     | 447.41     | 339.52     | 971.93     | 632.40     | 388.46    | 488.48     | 1422.33    | 933.85      | 570.37     |
| 20             | 419.49     | 1018.73    | 599.24     | 514.90    | 415.71     | 998.75     | 583.04     | 502.50    | 495.47       | 998.75     | 503.28     | 453.78     | 339.52     | 818.98     | 479.45     | 412.76    | 488.48     | 1198.50    | 710.02      | 608.32     |
| 25             | 419.49     | 887.23     | 467.74     | 518.61    | 415.71     | 869.83     | 454.13     | 504.87    | 495.47       | 869.83     | 374.37     | 433.30     | 339.52     | 713.26     | 373.74     | 415.09    | 488.48     | 1043.80    | 555.32      | 614.12     |
| 30             | 419.49     | 789.93     | 370.44     | 504.02    | 415.71     | 774.44     | 358.74     | 489.29    | 495.47       | 774.44     | 278.98     | 394.82     | 339.52     | 635.04     | 295.52     | 402.70    | 488.48     | 929.33     | 440.85      | 598.39     |
| 45             | 419.49     | 608.51     | 189.02     | 402.52    | 415.71     | 596.57     | 180.87     | 385.95    | 495.47       | 596.57     | 101.11     | 222.49     | 339.52     | 489.19     | 149.67     | 319.13    | 488.48     | 715.89     | 227.41      | 483.33     |
| 60             | 419.49     | 506.95     | 87.47      | 254.99    | 415.71     | 497.01     | 81.31      | 237.45    | 495.47       | 497.01     | 1.55       | 4.64       | 339.52     | 407.55     | 68.03      | 198.54    | 488.48     | 596.42     | 107.94      | 314.12     |
| 90             | 419.49     | 394.16     | -25.32     | -114.45   | 415.71     | 386.44     | -29.27     | -132.49   | 495.47       | 386.44     | -109.03    | -504.70    | 339.52     | 316.88     | -22.65     | -102.45   | 488.48     | 463.72     | -24.76      | -111.73    |
| 120            | 419.49     | 331.75     | -87.74     | -539.93   | 415.71     | 325.24     | -90.47     | -557.42   | 495.47       | 325.24     | -170.22    | -1069.66   | 339.52     | 266.70     | -72.82     | -448.51   | 488.48     | 390.29     | -98.19      | -603.47    |
| 180            | 419.49     | 261.71     | -157.78    | -1494.78  | 415.71     | 256.57     | -159.13    | -1509.19  | 495.47       | 256.57     | -238.89    | -2302.61   | 339.52     | 210.39     | -129.13    | -1224.19  | 488.48     | 307.89     | -180.59     | -1709.10   |
| 270            | 419.49     | 207.65     | -211.84    | -3077.64  | 415.71     | 203.58     | -212.13    | -3084.58  | 495.47       | 203.58     | -291.89    | -4301.35   | 339.52     | 166.94     | -172.59    | -2508.81  | 488.48     | 244.30     | -244.18     | -3544.60   |
| 360            | 419.49     | 176.01     | -243.48    | -4778.98  | 415.71     | 172.56     | -243.15    | -4776.18  | 495.47       | 172.56     | -322.91    | -6417.24   | 339.52     | 141.50     | -198.03    | -3888.72  | 488.48     | 207.07     | -281.41     | -5519.42   |
| 540            | 419.49     | 137.81     | -281.68    | -8416.88  | 415.71     | 135.11     | -280.60    | -8390.06  | 495.47       | 135.11     | -360.36    | -10880.89  | 339.52     | 110.79     | -228.74    | -6837.66  | 488.48     | 162.13     | -326.35     | -9745.72   |
| 720            | 419.49     | 114.40     | -305.09    | -12254.25 | 415.71     | 112.15     | -303.56    | -12199.53 | 495.47       | 112.15     | -383.31    | -15540.78  | 339.52     | 91.97      | -247.56    | -9946.98  | 488.48     | 134.58     | -353.90     | -14206.63  |
| 1080           | 419.49     | 86.30      | -333.19    | -20250.52 | 415.71     | 84.61      | -331.10    | -20133.77 | 495.47       | 84.61      | -410.86    | -25176.79  | 339.52     | 69.38      | -270.15    | -16424.14 | 488.48     | 101.53     | -386.95     | -23506.69  |
| 1440           | 419.49     | 69.24      | -350.25    | -28505.61 | 415.71     | 67.88      | -347.83    | -28321.75 | 495.47       | 67.88      | -427.59    | -35066.47  | 339.52     | 55.66      | -283.86    | -23109.36 | 488.48     | 81.46      | -407.02     | -33111.23  |
| 1800           | 419.49     | 57.40      | -362.09    | -36915.98 | 415.71     | 56.27      | -359.44    | -36661.90 | 495.47       | 56.27      | -439.19    | -45107.40  | 339.52     | 46.14      | -293.38    | -29919.38 | 488.48     | 67.53      | -420.95     | -42898.51  |
| 2160           | 419.49     | 49.17      | -370.32    | -45379.00 | 415.71     | 48.21      | -367.50    | -45053.69 | 495.47       | 48.21      | -447.26    | -55200.45  | 339.52     | 39.53      | -300.00    | -36771.75 | 488.48     | 57.85      | -430.63     | -52747.71  |
| 2880           | 419.49     | 38.13      | -381.36    | -62426.91 | 415.71     | 37.38      | -378.32    | -61956.75 | 495.47       | 37.38      | -458.08    | -75505.60  | 339.52     | 30.66      | -308.87    | -50574.45 | 488.48     | 44.86      | -443.62     | -72589.51  |
| 4320           | 419.49     | 26.42      | -393.06    | -96718.82 | 415.71     | 25.91      | -389.80    | -95955.18 | 495.47       | 25.91      | -469.56    | -116309.37 | 339.52     | 21.24      | -318.28    | -78337.52 | 488.48     | 31.09      | -457.39     | -112503.74 |
| Volume check   |            |            |            | ok        |            |            |            | ok        |              |            |            | ok         |            |            |            | ok        |            |            |             | ok         |

|                |            |            |            |           |            |            |            |           | C4           |            |            |           |            |            |            |           |
|----------------|------------|------------|------------|-----------|------------|------------|------------|-----------|--------------|------------|------------|-----------|------------|------------|------------|-----------|
| Storm Duration |            |            |            |           |            |            |            |           |              |            |            |           |            |            |            |           |
| (mins)         |            | 3          | 38         |           |            | 3          | 39         |           |              | 40         | )          |           |            | 4          | 1          |           |
|                | Pre-Dev    | Post-Dev   | Excess     | Storage   | Pre-Dev    | Post-Dev   | Excess     | Storage   | Pre-Dev Flow | Post-Dev   | Excess     | Storage   | Pre-Dev    | Post-Dev   | Excess     | Storage   |
|                | Flow (I/s) | Flow (I/s) | Flow (I/s) | (m3)      | Flow (I/s) | Flow (I/s) | Flow (I/s) | (m3)      | (l/s)        | Flow (I/s) | Flow (I/s) | (m3)      | Flow (I/s) | Flow (I/s) | Flow (I/s) | (m3)      |
| 1              | 353.27     | 2431.00    | 2077.73    | -96.51    | 355.41     | 2431.00    | 2075.59    | -95.46    | 358.02       | 2431.00    | 2072.98    | -94.20    | 343.76     | 2431.00    | 2087.24    | -101.32   |
| 2              | 353.27     | 1983.33    | 1630.06    | -17.08    | 355.41     | 1983.33    | 1627.92    | -16.14    | 358.02       | 1983.33    | 1625.31    | -15.02    | 343.76     | 1983.33    | 1639.57    | -21.38    |
| 3              | 353.27     | 1817.11    | 1463.84    | 55.02     | 355.41     | 1817.11    | 1461.70    | 55.84     | 358.02       | 1817.11    | 1459.09    | 56.81     | 343.76     | 1817.11    | 1473.35    | 51.25     |
| 4              | 353.27     | 1685.83    | 1332.56    | 115.26    | 355.41     | 1685.83    | 1330.42    | 115.96    | 358.02       | 1685.83    | 1327.81    | 116.78    | 343.76     | 1685.83    | 1342.07    | 112.04    |
| 5              | 353.27     | 1575.33    | 1222.06    | 165.87    | 355.41     | 1575.33    | 1219.92    | 166.44    | 358.02       | 1575.33    | 1217.31    | 167.12    | 343.76     | 1575.33    | 1231.57    | 163.18    |
| 10             | 353.27     | 1178.67    | 825.39     | 314.02    | 355.41     | 1178.67    | 823.25     | 313.98    | 358.02       | 1178.67    | 820.64     | 313.92    | 343.76     | 1178.67    | 834.91     | 314.03    |
| 15             | 353.27     | 948.22     | 594.95     | 373.09    | 355.41     | 948.22     | 592.81     | 372.44    | 358.02       | 948.22     | 590.20     | 371.64    | 343.76     | 948.22     | 604.46     | 375.81    |
| 20             | 353.27     | 799.00     | 445.73     | 390.51    | 355.41     | 799.00     | 443.59     | 389.25    | 358.02       | 799.00     | 440.98     | 387.70    | 343.76     | 799.00     | 455.24     | 395.95    |
| 25             | 353.27     | 695.87     | 342.59     | 386.49    | 355.41     | 695.87     | 340.45     | 384.62    | 358.02       | 695.87     | 337.84     | 382.32    | 343.76     | 695.87     | 352.11     | 394.65    |
| 30             | 353.27     | 619.56     | 266.28     | 368.09    | 355.41     | 619.56     | 264.14     | 365.60    | 358.02       | 619.56     | 261.53     | 362.56    | 343.76     | 619.56     | 275.80     | 378.97    |
| 45             | 353.27     | 477.26     | 123.99     | 267.54    | 355.41     | 477.26     | 121.85     | 263.20    | 358.02       | 477.26     | 119.24     | 257.90    | 343.76     | 477.26     | 133.50     | 286.64    |
| 60             | 353.27     | 397.61     | 44.34      | 130.76    | 355.41     | 397.61     | 42.20      | 124.56    | 358.02       | 397.61     | 39.59      | 117.00    | 343.76     | 397.61     | 53.85      | 158.13    |
| 90             | 353.27     | 309.15     | -44.12     | -201.33   | 355.41     | 309.15     | -46.27     | -211.27   | 358.02       | 309.15     | -48.87     | -223.40   | 343.76     | 309.15     | -34.61     | -157.35   |
| 120            | 353.27     | 260.19     | -93.08     | -577.59   | 355.41     | 260.19     | -95.22     | -591.29   | 358.02       | 260.19     | -97.83     | -607.98   | 343.76     | 260.19     | -83.56     | -516.92   |
| 180            | 353.27     | 205.26     | -148.01    | -1411.93  | 355.41     | 205.26     | -150.15    | -1433.18  | 358.02       | 205.26     | -152.76    | -1459.07  | 343.76     | 205.26     | -138.50    | -1317.75  |
| 270            | 353.27     | 162.86     | -190.41    | -2782.06  | 355.41     | 162.86     | -192.55    | -2814.68  | 358.02       | 162.86     | -195.16    | -2854.40  | 343.76     | 162.86     | -180.89    | -2637.41  |
| 360            | 353.27     | 138.05     | -215.23    | -4245.41  | 355.41     | 138.05     | -217.37    | -4289.42  | 358.02       | 138.05     | -219.98    | -4343.02  | 343.76     | 138.05     | -205.71    | -4050.17  |
| 540            | 353.27     | 108.09     | -245.19    | -7356.99  | 355.41     | 108.09     | -247.33    | -7423.81  | 358.02       | 108.09     | -249.94    | -7505.19  | 343.76     | 108.09     | -235.67    | -7060.43  |
| 720            | 353.27     | 89.72      | -263.55    | -10625.20 | 355.41     | 89.72      | -265.69    | -10714.87 | 358.02       | 89.72      | -268.30    | -10824.04 | 343.76     | 89.72      | -254.04    | -10227.26 |
| 1080           | 353.27     | 67.69      | -285.59    | -17414.14 | 355.41     | 67.69      | -287.73    | -17549.49 | 358.02       | 67.69      | -290.34    | -17714.30 | 343.76     | 67.69      | -276.07    | -16813.28 |
| 1440           | 353.27     | 54.31      | -298.97    | -24406.04 | 355.41     | 54.31      | -301.11    | -24587.09 | 358.02       | 54.31      | -303.72    | -24807.53 | 343.76     | 54.31      | -289.45    | -23602.29 |
| 1800           | 353.27     | 45.02      | -308.25    | -31519.43 | 355.41     | 45.02      | -310.40    | -31746.15 | 358.02       | 45.02      | -313.00    | -32022.18 | 343.76     | 45.02      | -298.74    | -30512.90 |
| 2160           | 353.27     | 38.56      | -314.71    | -38674.27 | 355.41     | 38.56      | -316.85    | -38946.66 | 358.02       | 38.56      | -319.46    | -39278.32 | 343.76     | 38.56      | -305.19    | -37464.89 |
| 2880           | 353.27     | 29.91      | -323.36    | -53079.40 | 355.41     | 29.91      | -325.51    | -53443.15 | 358.02       | 29.91      | -328.11    | -53886.02 | 343.76     | 29.91      | -313.85    | -51464.40 |
| 4320           | 353.27     | 20.73      | -332.55    | -82043.83 | 355.41     | 20.73      | -334.69    | -82590.31 | 358.02       | 20.73      | -337.30    | -83255.66 | 343.76     | 20.73      | -323.03    | -79617.42 |
| Volume check   |            |            |            | ok        |            |            |            | ok        |              |            |            | ok        |            |            |            | ok        |

|                |            |            |            |           |            |            |            |           |              | U          | 1          |           |            |            |            |           |            |            |             |           |
|----------------|------------|------------|------------|-----------|------------|------------|------------|-----------|--------------|------------|------------|-----------|------------|------------|------------|-----------|------------|------------|-------------|-----------|
| Storm Duration |            |            |            |           |            |            |            |           |              |            |            |           |            |            |            |           |            |            |             |           |
| (mins)         |            | 2          | 25         |           |            | 2          | 28         |           |              | 29         | )          |           |            | 3          | 0          |           |            |            | 31          |           |
|                | Pre-Dev    | Post-Dev   | Excess     | Storage   | Pre-Dev    | Post-Dev   | Excess     | Storage   | Pre-Dev Flow | Post-Dev   | Excess     | Storage   | Pre-Dev    | Post-Dev   | Excess     | Storage   | Pre-Dev    | Post-Dev   | Excess Flow | Storage   |
|                | Flow (I/s) | Flow (I/s) | Flow (I/s) | (m3)      | Flow (I/s) | Flow (I/s) | Flow (I/s) | (m3)      | (l/s)        | Flow (I/s) | Flow (I/s) | (m3)      | Flow (I/s) | Flow (I/s) | Flow (I/s) | (m3)      | Flow (I/s) | Flow (I/s) | (l/s)       | (m3)      |
| 1              | 155.37     | 972.40     | 817.03     | -81.28    | 207.43     | 1215.50    | 1008.07    | -95.69    | 210.33       | 1215.50    | 1005.17    | -94.47    | 208.88     | 1276.28    | 1067.40    | -104.39   | 145.23     | 850.85     | 705.62      | -24.63    |
| 2              | 155.37     | 793.33     | 637.96     | -39.52    | 207.43     | 991.67     | 784.24     | -44.19    | 210.33       | 991.67     | 781.33     | -43.13    | 208.88     | 1041.25    | 832.37     | -49.84    | 145.23     | 694.17     | 548.93      | 2.02      |
| 3              | 155.37     | 726.84     | 571.48     | -7.48     | 207.43     | 908.56     | 701.12     | -4.90     | 210.33       | 908.56     | 698.22     | -4.01     | 208.88     | 953.98     | 745.11     | -8.08     | 145.23     | 635.99     | 490.75      | 26.02     |
| 4              | 155.37     | 674.33     | 518.96     | 18.96     | 207.43     | 842.92     | 635.49     | 27.40     | 210.33       | 842.92     | 632.58     | 28.13     | 208.88     | 885.06     | 676.19     | 26.35     | 145.23     | 590.04     | 444.81      | 45.88     |
| 5              | 155.37     | 630.13     | 474.76     | 41.06     | 207.43     | 787.67     | 580.24     | 54.26     | 210.33       | 787.67     | 577.33     | 54.83     | 208.88     | 827.05     | 618.17     | 55.07     | 145.23     | 551.37     | 406.13      | 62.36     |
| 10             | 155.37     | 471.47     | 316.10     | 29.97     | 207.43     | 589.33     | 381.90     | 39.80     | 210.33       | 589.33     | 379.00     | 40.23     | 208.88     | 618.80     | 409.92     | 40.29     | 145.23     | 412.53     | 267.30      | 108.06    |
| 15             | 155.37     | 379.29     | 223.92     | 77.24     | 207.43     | 474.11     | 266.68     | 95.11     | 210.33       | 474.11     | 263.78     | 94.71     | 208.88     | 497.82     | 288.94     | 100.92    | 145.23     | 331.88     | 186.64      | 122.57    |
| 20             | 155.37     | 319.60     | 164.23     | 98.10     | 207.43     | 399.50     | 192.07     | 117.39    | 210.33       | 399.50     | 189.17     | 116.16    | 208.88     | 419.48     | 210.60     | 126.87    | 145.23     | 279.65     | 134.42      | 122.48    |
| 25             | 155.37     | 278.35     | 122.98     | 104.83    | 207.43     | 347.93     | 140.50     | 122.01    | 210.33       | 347.93     | 137.60     | 119.94    | 208.88     | 365.33     | 156.45     | 134.29    | 145.23     | 243.55     | 98.32       | 114.88    |
| 30             | 155.37     | 247.82     | 92.45      | 102.59    | 207.43     | 309.78     | 102.35     | 115.40    | 210.33       | 309.78     | 99.45      | 112.49    | 208.88     | 325.27     | 116.39     | 129.92    | 145.23     | 216.84     | 71.61       | 102.23    |
| 45             | 155.37     | 190.90     | 35.53      | 45.96     | 207.43     | 238.63     | 31.20      | 41.07     | 210.33       | 238.63     | 28.30      | 37.39     | 208.88     | 250.56     | 41.68      | 54.27     | 145.23     | 167.04     | 21.81       | 48.34     |
| 60             | 155.37     | 159.04     | 3.68       | 7.69      | 207.43     | 198.81     | -8.63      | -18.28    | 210.33       | 198.81     | -11.53     | -24.50    | 208.88     | 208.75     | -0.13      | -0.27     | 145.23     | 139.16     | -6.07       | -18.33    |
| 90             | 155.37     | 123.66     | -31.71     | -89.35    | 207.43     | 154.57     | -52.86     | -150.83   | 210.33       | 154.57     | -55.76     | -159.52   | 208.88     | 162.30     | -46.57     | -131.85   | 145.23     | 108.20     | -37.03      | -172.34   |
| 120            | 155.37     | 104.08     | -51.29     | -229.30   | 207.43     | 130.10     | -77.33     | -349.02   | 210.33       | 130.10     | -80.23     | -362.81   | 208.88     | 136.60     | -72.27     | -324.24   | 145.23     | 91.07      | -54.17      | -341.97   |
| 180            | 155.37     | 82.10      | -73.27     | -441.18   | 207.43     | 102.63     | -104.80    | -636.75   | 210.33       | 102.63     | -107.70    | -655.57   | 208.88     | 107.76     | -101.12    | -610.91   | 145.23     | 71.84      | -73.39      | -710.16   |
| 270            | 155.37     | 65.15      | -90.22     | -840.43   | 207.43     | 81.43      | -126.00    | -1182.27  | 210.33       | 81.43      | -128.90    | -1211.29  | 208.88     | 85.50      | -123.37    | -1152.32  | 145.23     | 57.00      | -88.23      | -1304.37  |
| 360            | 155.37     | 55.22      | -100.15    | -1446.98  | 207.43     | 69.02      | -138.41    | -2010.86  | 210.33       | 69.02      | -141.31    | -2055.32  | 208.88     | 72.47      | -136.40    | -1974.79  | 145.23     | 48.32      | -96.92      | -1931.46  |
| 540            | 155.37     | 43.23      | -112.13    | -2171.19  | 207.43     | 54.04      | -153.39    | -2985.72  | 210.33       | 54.04      | -156.29    | -3045.46  | 208.88     | 56.75      | -152.13    | -2951.40  | 145.23     | 37.83      | -107.40     | -3250.64  |
| 720            | 155.37     | 35.89      | -119.48    | -3549.09  | 207.43     | 44.86      | -162.57    | -4849.17  | 210.33       | 44.86      | -165.47    | -4939.88  | 208.88     | 47.10      | -161.77    | -4812.75  | 145.23     | 31.40      | -113.83     | -4624.82  |
| 1080           | 155.37     | 27.07      | -128.29    | -5083.92  | 207.43     | 33.84      | -173.59    | -6907.24  | 210.33       | 33.84      | -176.49    | -7028.58  | 208.88     | 35.53      | -173.34    | -6879.48  | 145.23     | 23.69      | -121.54     | -7461.79  |
| 1440           | 155.37     | 21.72      | -133.65    | -8065.11  | 207.43     | 27.15      | -180.28    | -10916.03 | 210.33       | 27.15      | -183.18    | -11099.32 | 208.88     | 28.51      | -180.37    | -10898.07 | 145.23     | 19.01      | -126.23     | -10369.79 |
| 1800           | 155.37     | 18.01      | -137.36    | -11130.10 | 207.43     | 22.51      | -184.92    | -15029.42 | 210.33       | 22.51      | -187.82    | -15274.63 | 208.88     | 23.63      | -185.24    | -15026.58 | 145.23     | 15.76      | -129.48     | -13320.06 |
| 2160           | 155.37     | 15.43      | -139.94    | -14236.23 | 207.43     | 19.28      | -188.15    | -19194.31 | 210.33       | 19.28      | -191.05    | -19501.46 | 208.88     | 20.25      | -188.63    | -19209.12 | 145.23     | 13.50      | -131.74     | -16284.97 |
| 2880           | 155.37     | 11.96      | -143.41    | -17425.74 | 207.43     | 14.95      | -192.48    | -23460.05 | 210.33       | 14.95      | -195.38    | -23828.41 | 208.88     | 15.70      | -193.17    | -23499.82 | 145.23     | 10.47      | -134.77     | -22248.09 |
| 4320           | 155.37     | 8.29       | -147.08    | -23698.91 | 207.43     | 10.36      | -197.07    | -31859.36 | 210.33       | 10.36      | -199.97    | -32350.19 | 208.88     | 10.88      | -198.00    | -31942.32 | 145.23     | 7.25       | -137.98     | -34228.57 |
| Volume check   |            |            |            | ok        |            |            |            | ok        |              |            |            | ok        |            |            |            | ok        |            |            |             | ok        |

|                |            |            |            | D         | 2          |            |            |           | D3           |            |            |           |            |            |            |          |  |  |
|----------------|------------|------------|------------|-----------|------------|------------|------------|-----------|--------------|------------|------------|-----------|------------|------------|------------|----------|--|--|
| Storm Duration |            |            |            |           |            |            | _          |           |              | _          |            |           |            |            | -          |          |  |  |
| mins)          |            | 2          | 26         | -         |            | 2          | 27         | -         |              | 54         | -          | -         |            | 5          | 5          |          |  |  |
|                | Pre-Dev    | Post-Dev   | Excess     | Storage   | Pre-Dev    | Post-Dev   | Excess     | Storage   | Pre-Dev Flow | Post-Dev   | Excess     | Storage   | Pre-Dev    | Post-Dev   | Excess     | Storage  |  |  |
|                | FIOW (I/S) | FIOW (I/S) | Flow (I/S) | (m3)      | Flow (I/S) | FIOW (I/S) | FIOW (I/S) | (m3)      | (I/S)        | FIOW (I/S) | Flow (I/S) | (m3)      | FIOW (I/S) | FIOW (I/S) | FIOW (I/S) | (m3)     |  |  |
| 1              | 141.00     | 790.08     | 649.07     | -20.73    | 142.82     | 790.08     | 647.26     | -20.13    | 287.96       | 2005.58    | 1717.61    | -81.36    | 205.80     | 1276.28    | 1070.47    | -41.57   |  |  |
| 2              | 141.00     | 644.58     | 503.58     | 3.68      | 142.82     | 644.58     | 501.77     | 4.18      | 287.96       | 1636.25    | 1348.29    | -15.64    | 205.80     | 1041.25    | 835.45     | -0.96    |  |  |
| 3              | 141.00     | 590.56     | 449.56     | 25.62     | 142.82     | 590.56     | 447.75     | 26.02     | 287.96       | 1499.12    | 1211.15    | 44.04     | 205.80     | 953.98     | 748.18     | 35.74    |  |  |
| 4              | 141.00     | 547.90     | 406.89     | 43.71     | 142.82     | 547.90     | 405.08     | 44.00     | 287.96       | 1390.81    | 1102.85    | 93.93     | 205.80     | 885.06     | 679.26     | 66.21    |  |  |
| 5              | 141.00     | 511.98     | 370.98     | 58.66     | 142.82     | 511.98     | 369.17     | 58.85     | 287.96       | 1299.65    | 1011.69    | 135.88    | 205.80     | 827.05     | 621.25     | 91.62    |  |  |
| 10             | 141.00     | 383.07     | 242.07     | 99.34     | 142.82     | 383.07     | 240.25     | 99.01     | 287.96       | 972.40     | 684.44     | 259.10    | 205.80     | 618.80     | 413.00     | 163.61   |  |  |
| 15             | 141.00     | 308.17     | 167.17     | 111.05    | 142.82     | 308.17     | 165.36     | 110.20    | 287.96       | 782.28     | 494.32     | 308.82    | 205.80     | 497.82     | 292.01     | 188.82   |  |  |
| 20             | 141.00     | 259.68     | 118.67     | 109.21    | 142.82     | 259.68     | 116.86     | 107.84    | 287.96       | 659.18     | 371.21     | 324.19    | 205.80     | 419.48     | 213.67     | 192.15   |  |  |
| 25             | 141.00     | 226.16     | 85.16      | 100.38    | 142.82     | 226.16     | 83.34      | 98.49     | 287.96       | 574.09     | 286.13     | 321.87    | 205.80     | 365.33     | 159.53     | 184.21   |  |  |
| 30             | 141.00     | 201.36     | 60.35      | 86.86     | 142.82     | 201.36     | 58.54      | 84.44     | 287.96       | 511.13     | 223.17     | 307.69    | 205.80     | 325.27     | 119.46     | 168.70   |  |  |
| 45             | 141.00     | 155.11     | 14.11      | 31.48     | 142.82     | 155.11     | 12.29      | 27.49     | 287.96       | 393.74     | 105.77     | 227.74    | 205.80     | 250.56     | 44.76      | 98.31    |  |  |
| 60             | 141.00     | 129.22     | -11.78     | -35.78    | 142.82     | 129.22     | -13.59     | -41.36    | 287.96       | 328.03     | 40.07      | 117.93    | 205.80     | 208.75     | 2.94       | 8.82     |  |  |
| 90             | 141.00     | 100.47     | -40.53     | -189.55   | 142.82     | 100.47     | -42.34     | -198.32   | 287.96       | 255.05     | -32.92     | -149.96   | 205.80     | 162.30     | -43.50     | -201.09  |  |  |
| 120            | 141.00     | 84.56      | -56.44     | -357.87   | 142.82     | 84.56      | -58.25     | -369.83   | 287.96       | 214.66     | -73.30     | -454.25   | 205.80     | 136.60     | -69.20     | -434.34  |  |  |
| 180            | 141.00     | 66.71      | -74.29     | -721.46   | 142.82     | 66.71      | -76.11     | -739.83   | 287.96       | 169.34     | -118.63    | -1130.31  | 205.80     | 107.76     | -98.04     | -944.09  |  |  |
| 270            | 141.00     | 52.93      | -88.07     | -1305.88  | 142.82     | 52.93      | -89.89     | -1333.90  | 287.96       | 134.36     | -153.60    | -2242.17  | 205.80     | 85.50      | -120.30    | -1771.37 |  |  |
| 360            | 141.00     | 44.87      | -96.14     | -1920.89  | 142.82     | 44.87      | -97.95     | -1958.59  | 287.96       | 113.89     | -174.08    | -3430.90  | 205.80     | 72.47      | -133.33    | -2647.84 |  |  |
| 540            | 141.00     | 35.13      | -105.87    | -3211.36  | 142.82     | 35.13      | -107.69    | -3268.42  | 287.96       | 89.17      | -198.79    | -5960.83  | 205.80     | 56.75      | -149.06    | -4498.12 |  |  |
| 720            | 141.00     | 29.16      | -111.84    | -4552.95  | 142.82     | 29.16      | -113.66    | -4629.39  | 287.96       | 74.02      | -213.94    | -8619.96  | 205.80     | 47.10      | -158.70    | -6430.80 |  |  |
| 1080           | 141.00     | 22.00      | -119.00    | -7318.46  | 142.82     | 22.00      | -120.82    | -7433.68  | 287.96       | 55.84      | -232.12    | -14146.49 | 205.80     | 35.53      | -170.27    | -10428.9 |  |  |
| 1440           | 141.00     | 17.65      | -123.35    | -10149.92 | 142.82     | 17.65      | -125.17    | -10303.92 | 287.96       | 44.80      | -243.16    | -19840.47 | 205.80     | 28.51      | -177.29    | -14533.6 |  |  |
| 1800           | 141.00     | 14.63      | -126.37    | -13020.58 | 142.82     | 14.63      | -128.18    | -13213.33 | 287.96       | 37.14      | -250.82    | -25634.72 | 205.80     | 23.63      | -182.17    | -18701.9 |  |  |
| 2160           | 141.00     | 12.53      | -128.47    | -15904.86 | 142.82     | 12.53      | -130.28    | -16136.38 | 287.96       | 31.82      | -256.15    | -31463.14 | 205.80     | 20.25      | -185.56    | -22892.0 |  |  |
| 2880           | 141.00     | 9.72       | -131.28    | -21704.31 | 142.82     | 9.72       | -133.10    | -22013.35 | 287.96       | 24.67      | -263.29    | -43198.76 | 205.80     | 15.70      | -190.10    | -31322.3 |  |  |
| 4320           | 141.00     | 6.74       | -134.27    | -33353.67 | 142.82     | 6.74       | -136.08    | -33817.78 | 287.96       | 17.10      | -270.87    | -66797.13 | 205.80     | 10.88      | -194.92    | -48264.0 |  |  |
| olume check    |            |            |            | ok        |            |            |            | ok        |              |            |            | ok        |            |            |            | ok       |  |  |

| Storm Duration<br>(mins)         Post-Dev<br>Flow (Vs)         Post-Sv<br>Flow (Vs)         Facess<br>Flow (Vs)         Storage<br>(m3)         Post-Dev<br>Flow (Vs)         Facess<br>Flow (Vs)         Storage<br>Flow (Vs)         Facess<br>Flow (Vs)         Storage<br>Flow (Vs)         Facess<br>Flow (Vs)         Storage<br>Flow (Vs)         Flow (Vs)         Flow (Vs)<br>Flow (Vs)                                                                                                                                                                                                                                                                                                                                                                                                                    |                |            | D5         |            |           |            |            |            |           |              |            |            |            |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------|------------|------------|-----------|------------|------------|------------|-----------|--------------|------------|------------|------------|--|--|--|
| mmms         pre-Dev<br>Flow (l/s)         Pre-Dev<br>Flow (l/s)         Pre-Dev<br>Flow (l/s)         Pre-Dev<br>Flow (l/s)         Pre-Dev<br>Flow (l/s)         Flow (l/s)         Flox (l/s)         Flow (l/s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Storm Duration |            |            |            |           |            |            |            |           |              | _          |            |            |  |  |  |
| Pre-Dev         Post-Dev         Excess         Storage         Pre-Dev         Pre-Dev         Excess         Storage           1         282.79         2005.58         1722.78         -84.01         424.30         3099.53         2675.22         -136.66         586.07         3707.28         3121.21         -125.61           3         282.79         1499.12         1216.32         419.64         424.30         2528.75         514.04         546.07         2271.09         2186.03         100.27           4         282.79         1390.81         110.02         92.14         424.30         2008.55         1584.25         203.70         586.07         2402.38         1816.31         263.28           10         282.79         972.40         689.61         250.07         424.30         100.85         154.62         100.05         586.07         1240.23         1816.31         263.28           20         282.79         972.40         689.61         252.46         424.30         100.87         594.42         512.41         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (mins)         |            | 4          | 95_        |           |            |            | 50 _       |           |              | 51         | · _        |            |  |  |  |
| Flow (irs)         Flow (i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                | Pre-Dev    | Post-Dev   | Excess     | Storage   | Pre-Dev    | Post-Dev   | Excess     | Storage   | Pre-Dev Flow | Post-Dev   | Excess     | Storage    |  |  |  |
| 1       282.79       2005.58       1722.78       -84.01       424.30       3099.53       2875.22       -136.66       586.07       3707.28       3121.21       -125.61         2       282.79       1469.12       1216.32       41.95       424.30       2528.75       5210.44       544.00       586.07       2771.09       2186.03       100.27         4       282.79       1390.81       1108.02       92.14       424.30       2149.44       1725.14       137.69       586.07       2570.90       2186.31       189.44         5       282.79       1229.65       1016.86       134.39       424.30       2149.44       1725.14       137.69       586.07       287.09       1984.83       189.44         15       282.79       782.28       499.49       310.26       424.30       1502.80       1078.50       400.00       586.07       144.64       859.97       552.26         20       282.79       574.09       231.33       326.26       424.30       1018.73       594.42       512.41       586.07       146.04       852.41       566.60         282.79       511.13       228.34       313.56       424.30       608.57       586.07       166.3       30.357                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                | Flow (I/S) | Flow (I/S) | Flow (I/S) | (m3)      | Flow (I/S) | Flow (I/S) | Flow (I/S) | (m3)      | (I/S)        | Flow (I/S) | Flow (I/S) | (m3)       |  |  |  |
| 2 282.79 1638.25 1353.46 -18.02 424.30 258.75 2104.45 -34.00 586.07 3024.58 2438.51 -7.00<br>3 282.79 1390.81 1108.02 92.14 424.30 2316.82 1892.51 59.40 586.07 277.10 9186.03 100.27<br>4 282.79 1390.81 1108.60 134.9 424.30 2104.55 1584.25 203.70 586.07 2402.38 1816.31 263.92<br>10 282.79 972.40 689.61 259.07 424.30 1208.26 1584.25 203.70 586.07 1240.04 859.97 552.96<br>20 282.79 972.40 689.61 259.07 424.30 1208.26 744.8 482.74 586.07 1246.4 639.97 552.96<br>20 282.79 659.18 376.38 327.11 424.30 1208.96 744.8 442.74 586.07 1246.4 639.97 552.96<br>20 282.79 574.09 291.30 326.26 424.30 1807.3 594.42 512.41 586.07 1246.48 632.41 566.00<br>25 282.79 574.09 291.30 326.26 424.30 789.93 365.63 498.77 586.07 1061.20 475.13 564.30<br>30 282.79 511.13 228.34 313.56 424.30 789.93 365.63 498.77 586.07 727.82 134.75 504.64<br>45 282.79 393.74 110.94 238.09 424.30 506.95 82.65 241.41 586.07 67 727.82 134.75 504.64<br>45 282.79 326.30 45.23 132.76 424.30 334.16 -30.14 -136.42 586.07 67 727.82 134.75 504.64<br>45 282.79 328.03 45.23 132.76 424.30 334.16 -30.14 -136.42 586.07 67 727.82 134.75 504.64<br>120 282.79 214.66 -68.13 4.21.33 424.30 334.16 -30.14 -136.42 586.07 67 727.82 141.75 530.63<br>60 282.79 214.66 -68.13 4.21.33 424.30 334.16 -30.14 -136.42 586.07 67 727.82 141.75 530.53<br>60 282.79 113.86 -146.81 -421.33 424.30 220.765 -216.65 158.67 313.02 -273.05 -2262.45<br>270 282.79 113.86 -146.81 -261.82 244.30 207.76 -242.59 560.77 138.83 4.412.55 -748.89<br>540 282.79 113.89 -168.91 -332.47 424.30 207.76 -248.26 -4315.51 586.07 248.37 -337.70 4965.46<br>540 282.79 134.86 -146.81 -261.82 424.30 176.1 -248.26 -456.55 158.607 248.37 -337.70 2465.45<br>540 282.79 55.44 -228.95 -1382.08 424.30 176.1 -248.26 -315.51 586.07 248.37 -337.70 2465.45<br>540 282.79 134.86 -458.91 -332.08 424.30 261.71 -162.60 -542.47 3586.07 248.37 -337.70 -2624.75<br>540 282.79 55.44 -228.95 -1382.08 424.30 176.1 -248.26 -451.15 586.07 248.32 -451.55<br>540 282.79 55.44 -228.95 -1382.08 424.30 57.40 -338.00 -26554.11 586.07 68.65 -57.76 53.85<br>540 282.79 55.44 -228.95 -1380.05 57.44 330 3 | 1              | 282.79     | 2005.58    | 1722.78    | -84.01    | 424.30     | 3099.53    | 2675.22    | -136.66   | 586.07       | 3707.28    | 3121.21    | -125.61    |  |  |  |
| 3 282.79 1499.12 1216.32 41.95 424.30 2316.82 1892.51 59.40 586.07 257.09 2185.03 100.27<br>4 282.79 1390.81 1108.02 92.14 424.30 2149.44 1725.14 137.69 586.07 257.09 1984.83 189.44<br>5 282.79 1299.65 1016.86 134.39 424.30 2149.44 1725.14 137.69 586.07 247.0.38 1816.31 263.92<br>10 282.79 772.40 689.61 257.0 424.30 1502.80 1078.50 400.00 586.07 1797.47 1211.40 476.38<br>15 282.79 782.28 499.49 310.26 424.30 1502.80 1078.50 4400.00 586.07 11974.57 1211.40 476.38<br>16 282.79 576.09 291.30 326.26 424.30 1018.73 594.42 512.41 586.07 11216.48 632.41 586.00<br>26 282.79 576.09 291.30 326.26 424.30 1018.73 594.42 512.41 586.07 1216.48 632.41 586.00<br>30 282.79 511.13 228.34 313.56 424.30 789.93 365.63 498.77 586.07 7044.82 357.5 504.64<br>45 282.79 330.74 110.94 238.09 424.30 608.51 184.20 393.12 586.07 727.82 141.75 310.35<br>60 282.79 511.13 228.34 313.56 424.30 506.95 82.65 241.41 586.07 606.36 20.29 60.60<br>90 282.79 256.05 -27.75 -128.1 424.30 334.16 -30.14 -136.42 586.07 727.82 141.75 310.35<br>120 282.79 514.36 -468.13 -421.33 424.30 334.16 -30.14 -136.42 586.07 727.82 141.75 310.35<br>120 282.79 134.36 -148.43 -2163.62 424.30 207.65 -216.65 -1570.33 586.07 248.37 -337.70 -4965.46<br>360 282.79 214.66 -68.13 -421.33 424.30 331.75 -92.55 -570.33 586.07 248.37 -337.70 -2824.75<br>270 282.79 134.36 -148.91 -332.47 1424.30 221.71 -162.60 -1542.13 586.07 248.37 -337.70 -2824.75<br>270 282.79 134.36 -148.91 -332.47 424.30 231.78 -284.92 -487.74 586.07 210.52 -375.55 -374.88<br>540 282.79 134.80 -428.27 91.78.9 24.87 176.01 -248.29 -4867.74 586.07 210.52 -375.55 -374.88<br>540 282.79 134.80 -428.97 138.9 -148.91 -332.47 424.30 261.71 -162.60 -1542.15 586.07 248.37 -337.70 -4862.84<br>540 282.79 134.80 -428.97 138.9 -148.81 -2163.62 424.30 261.71 -428.29 -4877.43 586.07 210.52 -375.55 -374.88<br>540 282.79 37.14 -246.85 +2698.79 114.42 -365.95 +266.67 136.82 +242 +279.556.57 +266.77 136.82 +242 +279.556.5 +260.79 +242.30 137.81 -286.49 -4376.551 586.07 130.82 -428.28 +243.02 287.99 -1348.0 424.30 437.43 -336.17 -5324.33 586.07 136.83 +422.4 +2598.50<br>2     | 2              | 282.79     | 1636.25    | 1353.46    | -18.02    | 424.30     | 2528.75    | 2104.45    | -34.00    | 586.07       | 3024.58    | 2438.51    | -7.00      |  |  |  |
| 4       282.79       1390.81       1108.02       92.14       424.30       2149.44       1725.14       137.69       586.07       2570.90       1984.83       189.44         5       282.79       1929.65       1018.66       134.39       424.30       2008.55       1584.25       203.70       586.07       2402.38       1816.31       253.92         10       282.79       972.40       689.61       255.07       242.30       1502.80       1078.50       440.00       586.07       144.60       4659.97       552.96         20       282.79       659.18       376.38       327.11       424.30       1018.73       594.42       512.41       586.07       1146.0       465.93       564.30         25       282.79       511.13       228.34       313.56       424.30       789.93       365.63       494.74       586.07       1061.20       727.82       141.75       504.64         45       282.79       393.74       110.94       238.09       492.30       306.45       242.40       393.17       10.35       506.07       727.82       141.75       510.35       504.64         120       282.79       214.66       -68.13       +421.33       424.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3              | 282.79     | 1499.12    | 1216.32    | 41.95     | 424.30     | 2316.82    | 1892.51    | 59.40     | 586.07       | 2771.09    | 2185.03    | 100.27     |  |  |  |
| 5       282.79       1299.65       1016.86       134.39       424.30       2008.55       1584.25       203.70       586.07       2402.38       1816.13       228.32         10       282.79       772.40       689.61       259.07       424.30       1502.80       1078.50       400.00       566.07       1474.47       1211.40       476.38         15       282.79       782.28       499.49       310.26       424.30       1018.75       594.42       512.41       586.07       1214.46.04       859.97       552.96         25       282.79       574.09       291.30       326.26       424.30       789.93       365.63       408.77       586.07       1214.46.04       859.97       544.2         30       282.79       571.13       228.23       313.56       402.430       789.93       365.63       408.77       586.07       727.82       141.75       310.35         60       282.79       328.03       424.30       334.15       -304.4       136.42       586.07       727.82       141.75       310.35         120       282.79       214.66       -66.13       -424.30       334.16       -304.4       136.42       586.07       244.31       546.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4              | 282.79     | 1390.81    | 1108.02    | 92.14     | 424.30     | 2149.44    | 1725.14    | 137.69    | 586.07       | 2570.90    | 1984.83    | 189.44     |  |  |  |
| 10         282.79         972.40         689.61         259.07         424.30         1502.80         1078.50         400.00         586.07         1797.47         1211.40         476.38           15         282.79         972.28         499.49         310.28         978.68         482.41         586.07         1446.04         689.91         552.26           20         282.79         659.18         376.38         327.11         424.30         1018.73         594.42         512.41         586.07         1164.8         632.41         566.03           30         282.79         511.13         228.34         313.56         424.30         608.51         184.20         393.12         586.07         727.82         141.75         504.64           45         282.79         393.74         110.94         238.04         606.51         184.20         393.12         586.07         727.82         141.75         310.35           60         282.79         328.03         45.23         132.76         424.30         393.16         -30.14         -136.42         586.07         471.45         114.82         -114.82         586.7         241.41         586.07         241.47         586.07         243.37         -2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5              | 282.79     | 1299.65    | 1016.86    | 134.39    | 424.30     | 2008.55    | 1584.25    | 203.70    | 586.07       | 2402.38    | 1816.31    | 263.92     |  |  |  |
| 15       282.79       782.28       499.49       310.26       424.30       1018.73       594.42       512.41       586.07       1446.04       859.97       552.96         20       282.79       650.18       376.38       322.11       424.30       1018.73       594.42       514.74       586.07       1218.48       632.41       566.00         25       282.79       574.09       291.30       326.26       424.30       887.23       462.33       514.74       586.07       1016.120       475.13       546.43         45       282.79       393.74       110.94       238.09       424.30       506.95       241.41       586.07       606.32       202.29       60.60       60.60       60.60       60.60       60.60       202.29       60.60       60.90       202.27       60.60       368.60       -1146.2       586.07       313.02       -273.05       -2624.75       578.19       113.44       -107.18       424.30       201.75       -670.33       586.07       313.02       -273.05       -2624.75       273.05       -2624.75       313.02       -273.05       -2624.75       313.02       -273.05       -2624.75       346.07       114.64       -421.33       424.30       201.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10             | 282.79     | 972.40     | 689.61     | 259.07    | 424.30     | 1502.80    | 1078.50    | 400.00    | 586.07       | 1797.47    | 1211.40    | 476.38     |  |  |  |
| 20         282.79         659.18         376.38         327.11         424.30         1018.73         594.42         512.41         596.07         1218.48         652.41         566.03           30         282.79         571.40         291.30         326.26         424.30         789.93         365.63         498.77         596.07         1061.20         475.13         564.30           30         282.79         511.13         228.34         313.56         424.30         789.93         365.63         498.77         596.07         727.82         141.75         510.35           60         282.79         328.03         45.23         132.76         424.30         506.95         82.65         241.41         586.07         727.82         141.75         310.35           100         282.79         2216.66         -68.13         421.33         324.10         201.44         136.07         349.60         148.22         386.07         310.85         262.77         528.59           120         282.79         168.34         -113.46         -107.91         424.30         201.76         -216.65         3150.67         210.52         -274.05         268.07         210.52         -274.83         -274.55         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15             | 282.79     | 782.28     | 499.49     | 310.26    | 424.30     | 1208.98    | 784.68     | 482.74    | 586.07       | 1446.04    | 859.97     | 552.96     |  |  |  |
| 25         282.79         574.09         291.30         326.26         424.30         887.23         462.33         514.74         586.07         1061.20         475.13         546.30           30         282.79         571.13         252.34         313.56         424.30         769.93         365.63         498.77         586.07         794.82         358.75         504.64           45         282.79         393.74         110.94         238.09         424.30         506.65         424.14         586.07         727.82         141.75         310.35           60         282.79         256.05         -27.75         -126.11         424.30         394.16         -30.14         -136.42         586.07         371.45         -1186.29         -572.82         141.75         -1186.49           120         282.79         214.66         -68.13         -421.31         424.30         291.71         -162.20         60.60         248.77         356.07         313.02         -273.05         -2624.75           270         282.79         134.36         -1079.18         424.30         201.71         -162.20         480.77         356.07         248.37         -337.70         -4965.46           282.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20             | 282.79     | 659.18     | 376.38     | 327.11    | 424.30     | 1018.73    | 594.42     | 512.41    | 586.07       | 1218.48    | 632.41     | 566.00     |  |  |  |
| 30         282.79         511.13         228.34         313.56         424.30         789.93         365.63         498.77         586.07         944.82         338.75         504.64           45         282.79         393.74         110.94         238.09         424.30         606.51         184.20         393.74         110.94         238.09         424.30         606.51         184.20         393.12         586.07         727.82         141.75         310.35           60         282.79         328.03         45.23         132.76         424.30         394.16         -30.14         -136.42         586.07         471.45         114.62         562.65         -275.82         59.80         421.41         586.07         471.45         114.62         -273.05         -262.475           120         282.79         216.66         -68.13         -421.33         424.30         231.76         -92.56         -570.33         586.07         313.02         -273.05         2624.75           270         282.79         134.36         -149.43         -2163.62         424.30         207.65         -216.65         3150.51         586.07         248.37         -337.07         -4965.46           720         282.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 25             | 282.79     | 574.09     | 291.30     | 326.26    | 424.30     | 887.23     | 462.93     | 514.74    | 586.07       | 1061.20    | 475.13     | 546.30     |  |  |  |
| 45       282.79       393.74       110.94       238.09       424.30       606.51       184.20       393.12       596.07       727.82       141.75       310.35         90       282.79       328.03       45.23       132.75       424.30       506.95       82.65       241.41       596.07       727.82       141.75       310.35         90       282.79       255.05       -27.75       -126.11       424.30       334.16       -30.44       -136.42       586.07       347.45       -114.62       -528.59         120       282.79       166.34       -107.91.8       424.30       281.71       -162.60       -1542.13       586.07       313.02       -273.05       -262.47.5         270       282.79       168.34       -1079.18       424.30       281.71       -162.60       -1542.13       586.07       313.02       -273.05       -262.47.5         360       282.79       113.89       -168.91       -332.487       424.30       176.01       -248.29       -4977.43       586.07       210.52       -375.55       -744.88         570       282.79       9.817       -193.62       -5799.75       424.30       178.1       -286.49       -4977.43       586.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30             | 282.79     | 511.13     | 228.34     | 313.56    | 424.30     | 789.93     | 365.63     | 498.77    | 586.07       | 944.82     | 358.75     | 504.64     |  |  |  |
| 60         282.79         328.03         45.23         132.76         424.30         506.95         82.65         241.41         586.07         606.36         20.29         60.60           90         282.79         225.05         -7.75         +72.11         424.30         394.16         -30.14         -136.42         586.07         607.36         407.42         586.07         471.45         -570.33         586.07         471.45         -114.62         -570.33         586.07         313.02         -273.05         -2262.47           120         282.79         148.64         -461.33         424.30         281.71         -162.60         -1542.13         586.07         313.02         -273.05         -2262.47           270         282.79         134.36         -149.81         +246.30         207.65         -216.65         -3150.51         586.07         240.37         -373.70         -4965.46           540         282.79         138.91         -139.62         -579.97         424.30         176.01         -248.29         -4877.43         586.07         164.83         -421.4         -2898.94           1080         282.79         55.84         -226.97         -301.80         424.30         114.40         -3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 45             | 282.79     | 393.74     | 110.94     | 238.09    | 424.30     | 608.51     | 184.20     | 393.12    | 586.07       | 727.82     | 141.75     | 310.35     |  |  |  |
| 90         282.79         255.05         -27.75         -126.11         424.30         394.16         -30.14         -136.42         596.07         471.45         -114.62         -528.59           120         282.79         214.66         -68.13         421.33         424.30         331.75         -92.55         -570.33         556.07         316.02         -189.27         -1185.49           180         282.79         163.34         -113.46         -1079.18         424.30         201.76         -126.65         -3516.05         586.07         318.02         -273.05         -282.79           282.79         133.86         -164.93         207.65         -246.65         -3156.05         586.07         210.52         -377.55         -7448.89           540         282.79         13.189         -168.91         -3324.87         424.30         117.81         -286.49         -856.57         586.07         10.52         -375.55         -7448.89           540         282.79         55.84         -226.95         -1382.08         424.30         114.40         -286.47         586.07         10.52         -375.55         -7448.89           1000         282.79         55.44         -226.95         -1382.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 60             | 282.79     | 328.03     | 45.23      | 132.76    | 424.30     | 506.95     | 82.65      | 241.41    | 586.07       | 606.36     | 20.29      | 60.60      |  |  |  |
| 120         282.79         214.66         -68.13         -421.33         424.30         231.75         -92.55         -570.33         586.07         396.80         -189.27         -1185.49           180         282.79         196.34         -113.46         -1079.18         424.30         281.71         -162.60         -1542.15         586.07         313.02         -273.05         -2624.75           270         282.79         134.36         -146.81.91         -324.84         7424.30         207.65         -216.65         -1542.15         586.07         248.37         -337.07         -4965.46           360         282.79         113.89         -166.91         -332.48         7424.30         176.01         -248.29         -4877.44         586.07         210.52         -375.55         -7448.89           540         282.79         55.84         -226.97         -5799.75         424.30         113.40         -309.91         -1245.21         586.07         136.83         -424.24         -12698.36           1080         282.79         55.84         -226.95         -1380.08         424.30         830.40         -338.00         -2654.11         586.07         136.85         -5612.4         +1222.75           16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 90             | 282.79     | 255.05     | -27.75     | -126.11   | 424.30     | 394.16     | -30.14     | -136.42   | 586.07       | 471.45     | -114.62    | -528.59    |  |  |  |
| 180         282.79         169.34         -113.46         -1079.18         242.30         261.71         -162.60         -1542.13         586.07         313.02         -273.05         -2624.75           270         282.79         193.36         -144.43         -216.56         246.27         556.07         248.37         -337.70         -0456.46           360         282.79         113.89         -166.91         -332.487         242.30         176.01         -286.49         -8566.57         586.07         210.52         -375.55         -7448.89           540         282.79         74.02         -208.77         -494.30         114.40         -309.91         -12455.21         586.07         105.83         -424.24         -16187.10           1000         282.79         74.02         -208.79         -132.00.8         424.30         114.40         -309.91         -12455.21         586.07         103.83         -442.43         114.40         -309.91         -12455.21         586.07         103.22         +422.48         -295501           1400         282.79         74.48         -226.95         -1382.00         424.30         69.24         -356.06         28041.11         586.07         58.65         560.27 <td< td=""><td>120</td><td>282.79</td><td>214.66</td><td>-68.13</td><td>-421.33</td><td>424.30</td><td>331.75</td><td>-92.55</td><td>-570.33</td><td>586.07</td><td>396.80</td><td>-189.27</td><td>-1185.49</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 120            | 282.79     | 214.66     | -68.13     | -421.33   | 424.30     | 331.75     | -92.55     | -570.33   | 586.07       | 396.80     | -189.27    | -1185.49   |  |  |  |
| 270         282.79         134.36         -148.31         -216.56         -216.65         -3150.51         586.07         248.37         -337.70         -4965.46           360         282.79         113.89         -168.91         -332.48         742.40         176.01         -248.29         -487.74         556.07         248.37         -337.70         -4965.46           540         282.79         189.11         -193.62         -5799.75         242.30         173.71         -248.29         -487.74         556.07         210.52         -375.55         -7448.89           720         282.79         55.84         -226.95         -1382.00         424.30         114.40         -309.91         -1245.21         586.07         136.83         -449.24         -12698.36           1060         282.79         55.84         -226.95         -1382.00         824.30         83.0         -338.00         -2055.11         586.07         128.22         -428.28         -2955.01           114.00         282.79         37.14         -246.65         -25087.90         424.30         69.24         -365.06         -28811.1         586.07         58.65         561.42         -521.28         -520.92.65         -5100.84         282.79         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 180            | 282.79     | 169.34     | -113.46    | -1079.18  | 424.30     | 261.71     | -162.60    | -1542.13  | 586.07       | 313.02     | -273.05    | -2624.75   |  |  |  |
| 360         282.79         113.89         -168.91         -332.487         242.30         176.01         -248.29         -4877.43         596.07         210.52         -375.55         -7448.89           540         282.79         9817         -136.62         -5797.5         424.30         137.81         -286.49         -4567.65         586.07         164.83         -4212.4         -12698.36           720         282.79         74.02         -208.77         -8403.80         424.30         114.40         -309.91         -12455.21         586.07         138.83         -442.24         -18187.10           1060         282.79         54.84         -226.95         -1382.00         424.30         69.24         -338.00         -2265.41         586.07         138.83         -442.24         -18187.10           1400         282.79         37.14         -246.55         -25067.90         424.30         69.24         -338.00         -2265.411.8         586.07         62.82         -503.25         -41222.75           1800         282.79         37.14         -246.56         -2506.12         424.30         49.17         -375.13         -4599.33         586.07         58.61         -527.26         6500.08         41222.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 270            | 282.79     | 134.36     | -148.43    | -2163.62  | 424.30     | 207.65     | -216.65    | -3150.51  | 586.07       | 248.37     | -337.70    | -4965.46   |  |  |  |
| 540         282.79         89.17         -193.62         -5799.75         242.30         137.81         -286.49         -4566.57         566.07         164.83         -42.12         -12698.36           720         282.79         74.02         -208.07         -840.83         424.30         114.40         -309.91         -12452.11         566.07         136.83         -442.4         -12698.36           1060         282.79         55.84         -226.95         -13820.08         424.30         86.30         -338.00         -205.41.1         586.07         136.83         -449.24         -12698.36           1440         282.79         55.84         -226.95         -13820.08         424.30         86.30         -338.00         -205.41.1         586.07         128.23         -449.24         -12698.36           1810         282.79         37.14         -246.65         -25087.90         424.30         69.24         -335.06         -288.11         586.07         68.65         -517.42         -53080.05           2810         282.79         37.14         -246.65         -2604.91         424.30         38.13         -386.17         -53243.38         586.07         58.61         -527.25         -527.25         -5300.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 360            | 282.79     | 113.89     | -168.91    | -3324.87  | 424.30     | 176.01     | -248.29    | -4877.43  | 586.07       | 210.52     | -375.55    | -7448.89   |  |  |  |
| 720         282.79         74.02         -208.77         -8403.80         424.30         11.40         -309.91         -1245.21         566.07         158.83         -449.24         -18187.10           1060         282.79         55.84         -226.95         -1820.06         424.30         86.30         -338.00         -2055.11         566.07         153.63         -449.24         -18187.10           1440         282.79         44.80         -237.99         -19403.83         424.30         69.24         -355.06         -28911.81         586.07         62.82         -503.25         -41222.75           1800         282.79         37.14         -245.65         -25087.90         424.30         69.24         -365.06         -28911.81         586.07         62.82         -503.25         -41222.75           1800         282.79         37.14         -245.65         -2508.06.12         424.30         49.17         -375.13         -45909.33         586.07         58.81         -527.26         65000.84           28280         282.79         24.67         -256.12         -42321.35         424.30         38.13         -386.17         6324.33         586.07         45.61         -540.46         -68087.73 <t< td=""><td>540</td><td>282.79</td><td>89.17</td><td>-193.62</td><td>-5799.75</td><td>424.30</td><td>137.81</td><td>-286.49</td><td>-8566.57</td><td>586.07</td><td>164.83</td><td>-421.24</td><td>-12698.36</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 540            | 282.79     | 89.17      | -193.62    | -5799.75  | 424.30     | 137.81     | -286.49    | -8566.57  | 586.07       | 164.83     | -421.24    | -12698.36  |  |  |  |
| 1080         282.79         55.84         -228.95         -1382.0.08         424.30         86.30         -338.00         -20554.11         586.07         103.22         -482.85         -29550.18           1440         282.79         44.80         -237.99         -1940.38         424.30         69.24         -355.06         -20811.81         586.07         103.22         -482.85         -29550.18           1800         282.79         37.14         -245.65         -25087.90         424.30         57.40         -366.06         -288.11.81         586.07         68.65         -517.42         -53080.05           2160         282.79         31.82         -250.98         -308.04         49.17         -375.13         -4509.033         586.07         68.65         -527.26         +5200.08           2880         282.79         24.67         -258.12         -422.43         38.13         -386.17         -63243.38         586.07         45.61         -540.46         -83987.73           4320         282.79         17.10         -265.70         -654.78.8         424.30         26.42         -397.88         -9794.56         586.07         31.61         -564.46         -137197.31           Volume check         0K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 720            | 282.79     | 74.02      | -208.77    | -8403.80  | 424.30     | 114.40     | -309.91    | -12455.21 | 586.07       | 136.83     | -449.24    | -18187.10  |  |  |  |
| 1440         282.79         44.80         -237.99         -19403.83         424.30         69.24         -355.06         -28911.81         586.07         82.82         -503.25         -41222.75           1800         282.79         37.14         -245.65         -5008.79         424.30         57.40         -366.90         -37424.73         586.07         68.65         -517.42         -53080.05           2160         282.79         31.82         -250.98         -30806.12         424.30         49.17         -375.13         -45590.33         586.07         68.65         -517.42         -53080.05           2880         282.79         24.67         -250.82         -42321.35         424.30         38.13         -386.17         -63243.38         586.07         45.61         -540.46         -88987.73           4320         282.79         17.10         -655.70         -6547.88         424.30         26.42         -397.88         5994.55         586.07         45.61         -540.46         -88987.73           Volume check         -         -         -         584.42         -397.88         -3974.56         586.07         31.61         -554.46         -137197.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1080           | 282.79     | 55.84      | -226.95    | -13820.08 | 424.30     | 86.30      | -338.00    | -20554.11 | 586.07       | 103.22     | -482.85    | -29550.18  |  |  |  |
| 1800         282.79         37.14         -246.65         -25087.90         424.30         57.40         -366.90         -3742.47.3         586.07         68.65         -517.42         -53080.05           2160         282.79         31.82         -250.98         -3080.12         424.30         49.17         -375.13         -45590.33         586.07         58.81         -527.26         -56000.84           2880         282.79         24.67         -258.12         -42321.35         424.30         38.13         -386.17         -63243.38         586.07         45.61         -540.46         -88897.73           4320         282.79         17.10         -265.70         -6547.88         424.30         26.42         -397.88         -97945.65         586.07         45.61         -540.46         -88897.73           Volume check         ok         ok         ok         ok         ok         ok         ok                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1440           | 282.79     | 44.80      | -237.99    | -19403.83 | 424.30     | 69.24      | -355.06    | -28911.81 | 586.07       | 82.82      | -503.25    | -41222.75  |  |  |  |
| 2160         282.79         31.82         -250.98         -30806.12         424.30         49.17         -375.13         -45990.33         586.07         58.81         -527.26         -56000.84           2880         282.79         24.67         -258.12         -42321.35         424.30         38.13         -386.17         -63243.38         586.07         45.61         -540.46         -88987.73           4320         282.79         17.10         -265.70         -647.88         424.30         26.42         -397.88         -979.65         586.07         31.61         -554.46         -137197.31           Volume check         ok         ok         ok         ok         ok         ok                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1800           | 282.79     | 37.14      | -245.65    | -25087.90 | 424.30     | 57.40      | -366.90    | -37424.73 | 586.07       | 68.65      | -517.42    | -53080.05  |  |  |  |
| 288.0         282.7.9         24.67         -258.12         -42321.35         424.30         38.13         -386.17         -63243.38         586.07         45.61         -540.46         -68987.73           4320         282.79         17.10         -265.70         -6547.88         424.30         26.42         -397.88         -97945.65         586.07         45.61         -540.46         -68987.73           Volume check         ok         -         -         -         -         -         -         -         -         -         -         -         -         17.179.31         -         -         -         -         -         -         -         -         -         -         0.k         -         0.k         -         0.k         -         0.k         -         0.4         -         -         0.4         -         0.4         -         -         0.4         -         -         0.4         -         0.4         -         -         0.4         -         -         0.4         -         -         0.4         -         -         0.4         -         -         0.4         -         -         0.4         -         -         0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2160           | 282.79     | 31.82      | -250.98    | -30806.12 | 424.30     | 49.17      | -375.13    | -45990.33 | 586.07       | 58.81      | -527.26    | -65000.84  |  |  |  |
| 4320         282.79         17.10         -265.70         -65478.88         424.30         26.42         -397.88         -97945.65         586.07         31.61         -554.46         -137197.31           Volume check         ok                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2880           | 282.79     | 24.67      | -258.12    | -42321.35 | 424.30     | 38.13      | -386.17    | -63243.38 | 586.07       | 45.61      | -540.46    | -88987.73  |  |  |  |
| Volume check ok ok ok                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4320           | 282.79     | 17.10      | -265.70    | -65478.88 | 424.30     | 26.42      | -397.88    | -97945.65 | 586.07       | 31.61      | -554.46    | -137197.31 |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Volume check   |            |            |            | ok        |            |            |            | ok        |              |            |            | ok         |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |            |            |            |           |            |            |            |           |              |            |            |            |  |  |  |

#### 100 YEAR ARI DRAINAGE PROPERTIES - UPSTREAM CATCHMENTS

| Catchment | AREAS (m2) |           |           |                  | TIME OF CONCE | INTRATION PRE-      | DEVELOPMENT  |          |                  | TIME OF CONCE |                     | CRITICAL STORM INTENSITY (mm/h) |          |         |          |
|-----------|------------|-----------|-----------|------------------|---------------|---------------------|--------------|----------|------------------|---------------|---------------------|---------------------------------|----------|---------|----------|
|           | Area (m2)  | Effective | Area (m2) | Longest Path (m) | RL Top (mAHD) | RL Bottom<br>(mAHD) | Slope (m/km) | TC (min) | Longest Path (m) | RL Top (mAHD) | RL Bottom<br>(mAHD) | Slope (m/km)                    | TC (min) | Pre-Dev | Post-Dev |
|           |            | Pre       | Post      |                  |               |                     |              |          |                  |               |                     |                                 |          |         |          |
| 46U       | 85334      | 29867     | 29867     | 200              | 65            | 60.6                | 22.00        | 8.9      | 200              | 65            | 60.6                | 22.00                           | 8.9      | 115.2   | 115.2    |
| 47U       | 25256      | 8840      | 8840      | 200              | 62            | 59                  | 15.00        | 10.8     | 200              | 62            | 59                  | 15.00                           | 10.8     | 102.6   | 102.6    |
| 48U       | 63701      | 22295     | 22295     | 193              | 59.8          | 57.4                | 12.44        | 9.9      | 193              | 59.8          | 57.4                | 12.44                           | 9.9      | 108.2   | 108.2    |
| 49NU      | 127362     | 44577     | 44577     | 204              | 67.5          | 64.5                | 14.71        | 9.4      | 204              | 67.5          | 64.5                | 14.71                           | 9.4      | 111.2   | 111.2    |
| 49SU      | 4097       | 1434      | 1434      | 410              | 72.6          | 67                  | 13.66        | 27.1     | 410              | 72.6          | 67                  | 13.66                           | 27.1     | 60.0    | 60.0     |
| DRU       | 241611     | 84564     | 84564     | 162              | 60            | 58.2                | 11.11        | 7.4      | 162              | 60            | 58.2                | 11.11                           | 7.4      | 127.8   | 127.8    |
| 50U       | 16395      | 5738      | 5738      | 177              | 62            | 59.4                | 14.69        | 10.0     | 177              | 62            | 59.4                | 14.69                           | 10.0     | 107.2   | 107.2    |
| 51U       | 51525      | 18034     | 18034     | 198              | 64            | 61                  | 15.15        | 10.0     | 198              | 64            | 61                  | 15.15                           | 10.0     | 107.7   | 107.7    |
| SDU       | 1174437    | 411053    | 411053    | 2014             | 145           | 74.5                | 35.00        | 62.7     | 2014             | 145           | 74.5                | 35.00                           | 62.7     | 36.8    | 36.8     |



#### 100 YEAR ARI DRAINAGE PROPERTIES - ROADS

| CATCHMENT |                   | AREA   | S (m2)     |          |       | EFFECTIV | E AREAS (m2) | TIME C   | OF CONCE | NTRATION P | RE DEVEL | OPMENT   | TIME OF  | CONCENT | RATION POST | T-DEVELC | OPMENT   | CRITICAL STORM INTENSITY (mm/h) |          |  |
|-----------|-------------------|--------|------------|----------|-------|----------|--------------|----------|----------|------------|----------|----------|----------|---------|-------------|----------|----------|---------------------------------|----------|--|
|           | Read Reserve (m2) | Curala | L ata (m2) | DOC (m2) | Total | Pre      | Post         | Longest  | RL Top   | RL Bottom  | Slope    | TC (mln) | Longest  | RL Top  | RL Bottom   | Slope    | TC (mln) | Pre-Dev                         | Post-Dev |  |
|           | Road Reserve (m2) | Swale  | Lots (m2)  | POS (m2) |       |          |              | Path (m) | (mAHD)   | (mAHD)     | (m/km)   |          | Path (m) | (mAHD)  | (mAHD)      |          |          |                                 |          |  |
| A1        | 32745             | 870    | 0          | 0        | 33615 | 11765    | 27964        | 989      | 70       | 54         | 16.18    | 51.3     | 989      | 70      | 54          | 16.18    | 47.0     | 44.0                            | 46.5     |  |
| A2        | 8531              | 256    | 0          | 0        | 8787  | 3075     | 7290         | 290      | 58.5     | 56.8       | 5.86     | 21.1     | 290      | 58.5    | 56.8        | 5.86     | 19.3     | 77.0                            | 81.3     |  |
| A3        | 9956              | 295    | 0          | 0        | 10251 | 3588     | 8507         | 340      | 66       | 64         | 5.88     | 24.3     | 340      | 66      | 64          | 5.88     | 22.3     | 70.4                            | 74.3     |  |
| A4        | 10792             | 229    | 0          | 0        | 11021 | 3857     | 9208         | 231      | 73.7     | 70.4       | 14.29    | 13.7     | 231      | 73.7    | 70.4        | 14.29    | 12.6     | 100.7                           | 106.4    |  |
| A5        | 24409             | 583    | 0          | 0        | 24992 | 8747     | 20835        | 612      | 75       | 70         | 8.17     | 37.5     | 612      | 75      | 70          | 8.17     | 34.3     | 53.6                            | 56.6     |  |
| A6        | 13299             | 420    | 0          | 0        | 13719 | 4802     | 11367        | 500      | 66       | 58         | 16.00    | 28.4     | 500      | 66      | 58          | 16.00    | 26.1     | 63.8                            | 67.3     |  |
| B1        | 13269             | 296    | 0          | 0        | 13565 | 4748     | 11323        | 213      | 73       | 72         | 4.69     | 15.5     | 213      | 73      | 72          | 4.69     | 14.2     | 93.4                            | 98.6     |  |
| C1        | 4400              | 0      | 0          | 0        | 4400  | 1540     | 3740         | 183      | 55.7     | 54         | 9.29     | 13.0     | 183      | 55.7    | 54          | 9.29     | 11.9     | 104.3                           | 110.3    |  |
| C2        | 4813              | 0      | 0          | 0        | 4813  | 1685     | 4091         | 233      | 55.5     | 54.5       | 4.29     | 19.1     | 233      | 55.5    | 54.5        | 4.29     | 17.5     | 81.8                            | 86.5     |  |
| C3        | 7868              | 249    | 0          | 0        | 8117  | 2841     | 6725         | 258      | 60.4     | 55.7       | 18.22    | 15.1     | 258      | 60.4    | 55.7        | 18.22    | 13.8     | 95.1                            | 100.3    |  |
| C4        | 29301             | 885    | 0          | 0        | 30186 | 10565    | 25039        | 570      | 63       | 60.5       | 4.39     | 38.8     | 570      | 63      | 60.5        | 4.39     | 35.6     | 52.5                            | 55.4     |  |
| D1        | 4310              | 141    | 0          | 1        | 4452  | 1558     | 3685         | 145      | 55.5     | 54         | 10.34    | 10.1     | 145      | 55.5    | 54          | 10.34    | 9.2      | 122.4                           | 129.2    |  |
| D2        | 5856              | 189    | 0          | 2        | 6047  | 2116     | 5006         | 195      | 57       | 55.5       | 7.69     | 13.9     | 195      | 57      | 55.5        | 7.69     | 12.8     | 99.8                            | 105.4    |  |
| D3        | 15265             | 326    | 0          | 0        | 15591 | 5457     | 13024        | 402      | 63.2     | 56.8       | 15.92    | 22.6     | 402      | 63.2    | 56.8        | 15.92    | 20.7     | 73.7                            | 77.8     |  |
| D4        | 10526             | 335    | 0          | 0        | 10861 | 3801     | 8997         | 338      | 70.5     | 63.2       | 21.60    | 18.5     | 338      | 70.5    | 63.2        | 21.60    | 17.0     | 83.5                            | 88.1     |  |
| D5        | 27241             | 623    | 0          | 0        | 27864 | 9752     | 23248        | 407      | 75       | 70.5       | 11.06    | 23.2     | 407      | 75      | 70.5        | 11.06    | 21.3     | 72.5                            | 76.5     |  |

| Runoff Coefficients | Pre-Dev | Post-Dev |
|---------------------|---------|----------|
| Roads               | 0.35    | 0.85     |
| Swales/Basins       | 0.35    | 1        |
| Lots                | 0.35    | 0        |
| OS                  | 0.35    | 0        |

Event

1 min

2 min

3 min

4 min

5 min

10 min

15 min

20 min

25 min

30 min

45 min

1.5 hr

1 hr

2 hr

3 hr

4.5 hr

6 hr

9 hr

12 hr

18 hr

24 hr

30 hr

36 hr

48 hr

72 hr



#### 100 YEAR ARI FLOWS - ROADS

| Storm     |            |                |            |                 |            |              |            |          |            |              |            |           |            |            |            |                 |            |            |            |           |                |            |            |           |
|-----------|------------|----------------|------------|-----------------|------------|--------------|------------|----------|------------|--------------|------------|-----------|------------|------------|------------|-----------------|------------|------------|------------|-----------|----------------|------------|------------|-----------|
| Duration  |            |                |            |                 |            |              |            |          |            |              |            |           |            |            |            |                 |            |            |            |           |                |            |            |           |
| (mins)    |            |                | A1         |                 |            |              | A2         |          |            |              | A3         |           |            |            | A4         |                 |            |            | A5         |           |                |            | A6         |           |
|           | Pre-Dev    | Post-Dev       | Excess     | Storage         | Pre-Dev    | Post-Dev     | Excess     | Storage  | Pre-Dev    | Post-Dev     | Excess     | Storage   | Pre-Dev    | Post-Dev   | Excess     | Storage         | Pre-Dev    | Post-Dev   | Excess     | Storage   | Pre-Dev        | Post-Dev   | Excess     | Storage   |
|           | Flow (I/s) | Flow (I/s)     | Flow (I/s) | (m3)            | Flow (I/s) | Flow (I/s)   | Flow (I/s) | (m3)     | Flow (I/s) | Flow (I/s)   | Flow (I/s) | (m3)      | Flow (I/s) | Flow (I/s) | Flow (I/s) | (m3)            | Flow (I/s) | Flow (I/s) | Flow (I/s) | (m3)      | Flow (I/s)     | Flow (I/s) | Flow (I/s) | (m3)      |
|           | 4.40.00    | 1000 11        | 1055 10    | 005.44          | 05 77      | 504.00       | 455.44     |          | 70.45      | 000.04       | 500.00     | 50.00     | 107.05     | 050.04     | 550.00     | 05.00           | 100.01     | 1100 71    | 1050.10    | 100.17    | 05.40          | 040 75     | 707.00     | 75.47     |
| 1         | 143.93     | 1999.41        | 1855.48    | -265.41         | 65.77      | 521.22       | 455.44     | -39.29   | 70.15      | 608.24       | 538.09     | -50.69    | 107.95     | 658.34     | 550.39     | -35.09          | 130.31     | 1489.71    | 1359.40    | -163.47   | 85.10          | 812.75     | 727.66     | -75.47    |
| 2         | 143.93     | 1031.22        | 1487.29    | -191.67         | 05.77      | 425.24       | 359.46     | -21.31   | 70.15      | 490.23       | 426.09     | -29.40    | 107.95     | 537.11     | 429.10     | -13.60          | 130.31     | 1215.38    | 1085.07    | -109.52   | 85.10          | 003.08     | 577.99     | -46.63    |
| 3         | 143.93     | 1494.51        | 1350.58    | -123.76         | 00.77      | 389.00       | 323.82     | -5.08    | 70.15      | 404.04       | 384.50     | -10.11    | 107.95     | 492.09     | 384.14     | 0.04            | 130.31     | 1022.07    | 983.21     | -60.12    | 85.10          | 562.62     | 522.42     | -20.39    |
| 4         | 143.93     | 1205.65        | 1242.00    | -05.00          | 65.77      | 227.76       | 295.00     | 20.21    | 70.15      | 421.00       | 331.05     | 0.20      | 107.95     | 400.04     | 219 67     | 21.45           | 120.21     | 065.26     | 902.77     | -17.90    | 95.10          | 526.69     | 4/0.00     | 1.07      |
| 10        | 143.93     | 060 / 1        | 825.48     | 1/0.00          | 65.77      | 252 71       | 186.04     | 55 77    | 70.15      | 20/ 00       | 224.01     | 63.37     | 107.95     | 310.02     | 211.24     | 72.83           | 130.31     | 722.28     | 501.05     | 135 11    | 85.10          | 304.06     | 308.07     | 20.91     |
| 15        | 143.03     | 779.88         | 635.95     | 241 31          | 65.77      | 203 30       | 137 53     | 72 21    | 70.15      | 237.25       | 167 10     | 84 33     | 107.35     | 256 79     | 148 84     | 86 73           | 130.31     | 581.07     | 450 76     | 197 38    | 85.10          | 317.02     | 231.92     | 111 38    |
| 20        | 143.93     | 657 15         | 513 22     | 298.81          | 65.77      | 171.31       | 105.53     | 79.68    | 70.15      | 199.91       | 129 77     | 94.84     | 107.95     | 216.38     | 108 43     | 89.29           | 130.31     | 489.62     | 359.32     | 234 13    | 85 10          | 267 13     | 182.03     | 127 76    |
| 25        | 143.93     | 572.32         | 428.39     | 338.72          | 65.77      | 149.20       | 83.42      | 82.51    | 70.15      | 174.11       | 103.96     | 99.94     | 107.95     | 188.45     | 80.50      | 85.94           | 130.31     | 426.43     | 296.12     | 257.71    | 85.10          | 232.65     | 147.55     | 136.93    |
| 30        | 143.93     | 509.56         | 365.63     | 366.84          | 65.77      | 132.84       | 67.06      | 82.22    | 70.15      | 155.01       | 84.87      | 101.41    | 107.95     | 167.78     | 59.83      | 78.64           | 130.31     | 379.66     | 249.36     | 272.48    | 85.10          | 207.13     | 122.04     | 141.27    |
| 45        | 143.93     | 392.53         | 248.60     | 414.10          | 65.77      | 102.33       | 36.55      | 71.46    | 70.15      | 119.41       | 49.27      | 94.32     | 107.95     | 129.25     | 21.30      | 44.08           | 130.31     | 292.46     | 162.16     | 288.94    | 85.10          | 159.56     | 74.47      | 138.96    |
| 60        | 143.93     | 327.02         | 183.09     | 431.83          | 65.77      | 85.25        | 19.48      | 52.69    | 70.15      | 99.48        | 29.34      | 77.96     | 107.95     | 107.68     | -0.27      | -0.78           | 130.31     | 243.65     | 113.35     | 283.14    | 85.10          | 132.93     | 47.84      | 124.33    |
| 90        | 143.93     | 254.26         | 110.33     | 419.63          | 65.77      | 66.28        | 0.51       | 2.16     | 70.15      | 77.35        | 7.20       | 30.17     | 107.95     | 83.72      | -24.23     | -107.26         | 130.31     | 189.45     | 59.14      | 235.53    | 85.10          | 103.36     | 18.26      | 75.10     |
| 120       | 143.93     | 214.00         | 70.07      | 371.57          | 65.77      | 55.79        | -9.99      | -58.26   | 70.15      | 65.10        | -5.04      | -29.05    | 107.95     | 70.46      | -37.49     | -226.56         | 130.31     | 159.45     | 29.14      | 160.74    | 85.10          | 86.99      | 1.90       | 10.75     |
| 180       | 143.93     | 168.82         | 24.89      | 208.93          | 65.77      | 44.01        | -21.77     | -197.37  | 70.15      | 51.36        | -18.79     | -168.61   | 107.95     | 55.59      | -52.36     | -488.78         | 130.31     | 125.78     | -4.52      | -39.20    | 85.10          | 68.62      | -16.47     | -145.95   |
| 270       | 143.93     | 133.95         | -9.98      | -131.46         | 65.77      | 34.92        | -30.86     | -432.50  | 70.15      | 40.75        | -29.40     | -408.56   | 107.95     | 44.11      | -63.84     | -916.35         | 130.31     | 99.80      | -30.50     | -412.09   | 85.10          | 54.45      | -30.65     | -421.56   |
| 360       | 143.93     | 113.54         | -30.39     | -547.83         | 65.77      | 29.60        | -36.18     | -688.24  | 70.15      | 34.54        | -35.61     | -672.39   | 107.95     | 37.38      | -70.57     | -1370.43        | 130.31     | 84.59      | -45.71     | -842.27   | 85.10          | 46.15      | -38.94     | -728.88   |
| 540       | 143.93     | 88.90          | -55.03     | -1531.80        | 65.77      | 23.17        | -42.60     | -1240.11 | 70.15      | 27.04        | -43.10     | -1247.01  | 107.95     | 29.27      | -78.68     | -2330.21        | 130.31     | 66.24      | -64.07     | -1816.16  | 85.10          | 36.14      | -48.96     | -1405.99  |
| 720       | 143.93     | 73.79          | -70.14     | -2644.13        | 65.77      | 19.24        | -46.54     | -1826.00 | 70.15      | 22.45        | -47.70     | -1861.21  | 107.95     | 24.30      | -83.65     | -3333.28        | 130.31     | 54.98      | -75.32     | -2886.15  | 85.10          | 30.00      | -55.10     | -2135.84  |
| 1080      | 143.93     | 55.67          | -88.26     | -5075.80        | 65.77      | 14.51        | -51.26     | -3052.51 | 70.15      | 16.93        | -53.21     | -3153.32  | 107.95     | 18.33      | -89.62     | -5409.04        | 130.31     | 41.48      | -88.83     | -5181.04  | 85.10          | 22.63      | -62.47     | -3680.49  |
| 1440      | 143.93     | 44.66          | -99.27     | -/6/4.46        | 65.77      | 11.64        | -54.13     | -4322.50 | 70.15      | 13.59        | -56.56     | -4496.17  | 107.95     | 14.71      | -93.24     | -7539.68        | 130.31     | 33.28      | -97.03     | -7600.29  | 85.10          | 18.16      | -66.94     | -5292.96  |
| 1800      | 143.93     | 37.03          | -106.91    | -103/3.69       | 65.77      | 9.65         | -56.12     | -5617.94 | 70.15      | 11.26        | -58.88     | -5868.88  | 107.95     | 12.19      | -95.76     | -9701.99        | 130.31     | 27.59      | -102.72    | -10093.83 | 85.10          | 15.05      | -70.04     | -6945.52  |
| 2100      | 143.93     | 31.72          | -112.21    | -13100.07       | 00.//      | 0.27<br>6.41 | -07.01     | -0922.57 | 70.15      | 9.00         | -00.00     | -1252.24  | 107.95     | 9 10       | -97.51     | -110/0.15       | 130.31     | 23.03      | -100.07    | -12012.85 | 85.10<br>95.10 | 12.89      | -72.20     | -0012.21  |
| 4320      | 143.93     | 24.00<br>17.05 | -118.33    | -10031.45       | 65.77      | 1 11         | -09.00     | -9002.02 | 70.15      | 7.40<br>5.10 | -64.96     | -15662.57 | 107.95     | 5.61       | -99.00     | -10249.70       | 130.31     | 12 70      | -117.61    | -17709.31 | 85.10          | 6.03       | -78 17     | -113/7.27 |
| Volume ch | eck        | 17.05          | -120.09    | -23000.90<br>ok | 00.11      | 7.44         | -01.33     | ok       | 70.15      | 5.19         | -090       | ok        | 107.90     | 5.01       | -102.34    | -23040.32<br>ok | 150.51     | 12.70      | -117.01    | ok        | 03.10          | 0.95       | -70.17     | ok        |

| Storm     |            |            |            |           |            |            |            |           |            |            |            |          |            |            |            |           |            |            |            |           |
|-----------|------------|------------|------------|-----------|------------|------------|------------|-----------|------------|------------|------------|----------|------------|------------|------------|-----------|------------|------------|------------|-----------|
| Duration  |            |            |            |           |            |            |            |           |            |            |            |          |            |            |            |           |            |            |            |           |
| (mins)    |            |            | B1         |           |            |            | C1         |           |            |            | C2         |          |            |            | C3         |           |            |            | C4         |           |
|           | Pre-Dev    | Post-Dev   | Excess     | Storage   | Pre-Dev    | Post-Dev   | Excess     | Storage   | Pre-Dev    | Post-Dev   | Excess     | Storage  | Pre-Dev    | Post-Dev   | Excess     | Storage   | Pre-Dev    | Post-Dev   | Excess     | Storage   |
|           | Flow (I/s) | Flow (I/s) | Flow (I/s) | (m3)      | Flow (I/s) | Flow (I/s) | Flow (I/s) | (m3)      | Flow (I/s) | Flow (I/s) | Flow (I/s) | (m3)     | Flow (I/s) | Flow (I/s) | Flow (I/s) | (m3)      | Flow (l/s) | Flow (I/s) | Flow (I/s) | (m3)      |
|           |            |            |            |           |            |            |            |           |            |            |            |          |            |            |            |           |            |            |            |           |
| 1         | 123.17     | 809.60     | 686.42     | -47.75    | 44.61      | 267.41     | 222.80     | -13.14    | 38.27      | 292.51     | 254.24     | -19.68   | 75.02      | 480.85     | 405.83     | -28.11    | 154.02     | 1790.26    | 1636.24    | -202.22   |
| 2         | 123.17     | 660.51     | 537.34     | -20.85    | 44.61      | 218.17     | 173.55     | -4.48     | 38.27      | 238.64     | 200.37     | -9.70    | 75.02      | 392.30     | 317.28     | -12.20    | 154.02     | 1460.59    | 1306.56    | -137.22   |
| 3         | 123.17     | 605.15     | 481.98     | 3.21      | 44.61      | 199.88     | 155.27     | 3.24      | 38.27      | 218.64     | 180.37     | -0.69    | 75.02      | 359.42     | 284.40     | 2.01      | 154.02     | 1338.17    | 1184.15    | -77.69    |
| 4         | 123.17     | 561.43     | 438.26     | 23.30     | 44.61      | 185.44     | 140.83     | 9.64      | 38.27      | 202.85     | 164.58     | 6.89     | 75.02      | 333.46     | 258.44     | 13.85     | 154.02     | 1241.50    | 1087.48    | -26.90    |
| 5         | 123.17     | 524.63     | 401.46     | 40.17     | 44.61      | 173.29     | 128.67     | 14.98     | 38.27      | 189.55     | 151.28     | 13.31    | 75.02      | 311.60     | 236.58     | 23.78     | 154.02     | 1160.12    | 1006.10    | 16.80     |
| 10        | 123.17     | 392.53     | 269.36     | 89.64     | 44.61      | 129.65     | 85.04      | 30.16     | 38.27      | 141.82     | 103.55     | 32.79    | 75.02      | 233.14     | 158.12     | 52.71     | 154.02     | 868.00     | 713.98     | 158.04    |
| 15        | 123.17     | 315.79     | 192.61     | 109.37    | 44.61      | 104.30     | 59.69      | 35.52     | 38.27      | 114.09     | 75.82      | 41.53    | 75.02      | 187.56     | 112.54     | 63.99     | 154.02     | 698.30     | 544.28     | 233.67    |
| 20        | 123.17     | 266.09     | 142.92     | 115.16    | 44.61      | 87.89      | 43.28      | 36.27     | 38.27      | 96.14      | 57.87      | 45.25    | 75.02      | 158.04     | 83.02      | 66.97     | 154.02     | 588.41     | 434.39     | 278.63    |
| 25        | 123.17     | 231.75     | 108.57     | 113.71    | 44.61      | 76.55      | 31.93      | 34.63     | 38.27      | 83.73      | 45.46      | 46.37    | 75.02      | 137.64     | 62.62      | 65.65     | 154.02     | 512.46     | 358.44     | 307.77    |
| 30        | 123.17     | 206.33     | 83.16      | 107.41    | 44.61      | 68.15      | 23.54      | 31.38     | 38.27      | 74.55      | 36.28      | 45.74    | 75.02      | 122.55     | 47.53      | 61.44     | 154.02     | 456.26     | 302.24     | 326.31    |
| 45        | 123.17     | 158.94     | 35.77      | 72.97     | 44.61      | 52.50      | 7.89       | 16.51     | 38.27      | 57.43      | 19.15      | 38.31    | 75.02      | 94.40      | 19.38      | 39.57     | 154.02     | 351.47     | 197.45     | 348.47    |
| 60        | 123.17     | 132.42     | 9.24       | 25.95     | 44.61      | 43.74      | -0.88      | -2.52     | 38.27      | 47.84      | 9.57       | 26.41    | 75.02      | 78.65      | 3.63       | 10.19     | 154.02     | 292.81     | 138.79     | 343.86    |
| 90        | 123.17     | 102.96     | -20.22     | -88.58    | 44.61      | 34.01      | -10.61     | -47.35    | 38.27      | 37.20      | -1.07      | -4.64    | 75.02      | 61.15      | -13.87     | -60.80    | 154.02     | 227.67     | 73.64      | 291.37    |
| 120       | 123.17     | 86.65      | -36.52     | -218.74   | 44.61      | 28.62      | -15.99     | -97.37    | 38.27      | 31.31      | -6.96      | -41.21   | 75.02      | 51.47      | -23.55     | -141.13   | 154.02     | 191.61     | 37.59      | 206.19    |
| 180       | 123.17     | 68.36      | -54.82     | -507.90   | 44.61      | 22.58      | -22.03     | -206.93   | 38.27      | 24.70      | -13.57     | -124.52  | 75.02      | 40.60      | -34.42     | -319.03   | 154.02     | 151.16     | -2.86      | -24.69    |
| 270       | 123.17     | 54.24      | -68.93     | -983.43   | 44.61      | 17.92      | -26.70     | -385.10   | 38.27      | 19.60      | -18.68     | -264.25  | 75.02      | 32.21      | -42.80     | -610.84   | 154.02     | 119.94     | -34.08     | -458.74   |
| 360       | 123.17     | 45.97      | -77.20     | -1491.37  | 44.61      | 15.19      | -29.43     | -573.99   | 38.27      | 16.61      | -21.66     | -415.49  | 75.02      | 27.31      | -47.71     | -922.00   | 154.02     | 101.66     | -52.36     | -961.69   |
| 540       | 123.17     | 36.00      | -87.18     | -2570.51  | 44.61      | 11.89      | -32.72     | -972.69   | 38.27      | 13.01      | -25.27     | -740.58  | 75.02      | 21.38      | -53.64     | -1581.97  | 154.02     | 79.60      | -74.42     | -2104.00  |
| 720       | 123.17     | 29.88      | -93.29     | -3702.76  | 44.61      | 9.87       | -34.74     | -1388.94  | 38.27      | 10.80      | -27.48     | -1084.72 | 75.02      | 17.75      | -57.27     | -2273.56  | 154.02     | 66.07      | -87.95     | -3361.83  |
| 1080      | 123.17     | 22.54      | -100.63    | -6052.68  | 44.61      | 7.45       | -37.17     | -2249.66  | 38.27      | 8.14       | -30.13     | -1803.65 | 75.02      | 13.39      | -61.63     | -3707.54  | 154.02     | 49.85      | -104.18    | -6063.66  |
| 1440      | 123.17     | 18.09      | -105.09    | -8470.10  | 44.61      | 5.97       | -38.64     | -3132.68  | 38.27      | 6.53       | -31.74     | -2546.99 | 75.02      | 10.74      | -64.28     | -5181.62  | 154.02     | 39.99      | -114.03    | -8914.95  |
| 1800      | 123.17     | 14.99      | -108.18    | -10926.66 | 44.61      | 4.95       | -39.66     | -4028.61  | 38.27      | 5.42       | -32.86     | -3304.67 | 75.02      | 8.90       | -66.11     | -6678.85  | 154.02     | 33.15      | -120.87    | -11855.48 |
| 2160      | 123.17     | 12.84      | -110.33    | -13397.69 | 44.61      | 4.24       | -40.37     | -4929.34  | 38.27      | 4.64       | -33.63     | -4067.48 | 75.02      | 7.63       | -67.39     | -8184.72  | 154.02     | 28.40      | -125.62    | -14826.65 |
| 2880      | 123.17     | 9.96       | -113.21    | -18370.96 | 44.61      | 3.29       | -41.32     | -6741.08  | 38.27      | 3.60       | -34.67     | -5604.45 | 75.02      | 5.92       | -69.10     | -11214.96 | 154.02     | 22.02      | -132.00    | -20839.19 |
| 4320      | 123.17     | 6.90       | -116.27    | -28370.50 | 44.61      | 2.28       | -42.33     | -10382.08 | 38.27      | 2.49       | -35.78     | -8697.30 | 75.02      | 4.10       | -70.92     | -17307.02 | 154.02     | 15.26      | -138.76    | -32978.07 |
| Volume ch | eck        |            |            | ok        |            |            |            |           |            |            |            |          |            |            |            | ok        |            |            |            | ok        |
| Storm     |            |            |            |           |            |            |            |           |            |            |            |           |            |            |            |           |            |            |            |           |
|-----------|------------|------------|------------|-----------|------------|------------|------------|-----------|------------|------------|------------|-----------|------------|------------|------------|-----------|------------|------------|------------|-----------|
| Duration  |            |            |            |           |            |            |            |           |            |            |            |           |            |            |            |           |            |            |            |           |
| (mins)    | D1         |            |            |           | D2         |            |            |           | D3         |            |            |           |            | D4         |            |           |            | D5         |            |           |
|           | Pre-Dev    | Post-Dev   | Excess     | Storage   |
|           | Flow (I/s) | Flow (I/s) | Flow (I/s) | (m3)      | Flow (I/s) | Flow (I/s) | Flow (I/s) | (m3)      | Flow (I/s) | Flow (I/s) | Flow (I/s) | (m3)      | Flow (I/s) | Flow (I/s) | Flow (I/s) | (m3)      | Flow (I/s) | Flow (I/s) | Flow (I/s) | (m3)      |
|           |            |            |            |           |            |            |            |           |            |            |            |           |            |            |            |           |            |            |            |           |
| 1         | 52.99      | 263.45     | 210.46     | -10.82    | 58.70      | 357.93     | 299.23     | -19.65    | 111.73     | 931.23     | 819.50     | -72.90    | 88.15      | 643.31     | 555.16     | -44.21    | 196.30     | 1662.25    | 1465.96    | -132.92   |
| 2         | 52.99      | 214.94     | 161.94     | -2.68     | 58.70      | 292.01     | 233.32     | -7.94     | 111.73     | 759.74     | 648.01     | -40.55    | 88.15      | 524.85     | 436.70     | -22.34    | 196.30     | 1356.15    | 1159.85    | -75.02    |
| 3         | 52.99      | 196.92     | 143.93     | 4.46      | 58.70      | 267.54     | 208.84     | 2.48      | 111.73     | 696.07     | 584.34     | -11.26    | 88.15      | 480.86     | 392.71     | -2.68     | 196.30     | 1242.49    | 1046.20    | -22.57    |
| 4         | 52.99      | 182.70     | 129.70     | 10.29     | 58.70      | 248.21     | 189.52     | 11.14     | 111.73     | 645.78     | 534.05     | 13.46     | 88.15      | 446.12     | 357.97     | 13.83     | 196.30     | 1152.73    | 956.43     | 21.74     |
| 5         | 52.99      | 170.72     | 117.73     | 15.08     | 58.70      | 231.94     | 173.25     | 18.37     | 111.73     | 603.45     | 491.72     | 34.49     | 88.15      | 416.88     | 328.73     | 27.78     | 196.30     | 1077.17    | 880.88     | 59.45     |
| 10        | 52.99      | 127.73     | 74.74      | 27.67     | 58.70      | 173.54     | 114.84     | 39.14     | 111.73     | 451.50     | 339.78     | 99.48     | 88.15      | 311.91     | 223.76     | 69.81     | 196.30     | 805.94     | 609.65     | 176.34    |
| 15        | 52.99      | 102.76     | 49.77      | 30.58     | 58.70      | 139.61     | 80.91      | 46.75     | 111.73     | 363.23     | 251.50     | 130.31    | 88.15      | 250.93     | 162.78     | 88.23     | 196.30     | 648.37     | 452.07     | 232.24    |
| 20        | 52.99      | 86.59      | 33.60      | 28.93     | 58.70      | 117.64     | 58.94      | 48.19     | 111.73     | 306.07     | 194.34     | 145.13    | 88.15      | 211.44     | 123.29     | 95.57     | 196.30     | 546.34     | 350.04     | 259.58    |
| 25        | 52.99      | 75.41      | 22.42      | 24.90     | 58.70      | 102.46     | 43.76      | 46.43     | 111.73     | 266.56     | 154.83     | 151.68    | 88.15      | 184.15     | 96.00      | 97.17     | 196.30     | 475.82     | 279.52     | 272.15    |
| 30        | 52.99      | 67.14      | 14.15      | 19.28     | 58.70      | 91.22      | 32.52      | 42.50     | 111.73     | 237.33     | 125.60     | 152.67    | 88.15      | 163.95     | 75.80      | 94.91     | 196.30     | 423.64     | 227.34     | 274.81    |
| 45        | 52.99      | 51.72      | -1.27      | -2.71     | 58.70      | 70.27      | 11.57      | 23.84     | 111.73     | 182.82     | 71.09      | 138.01    | 88.15      | 126.30     | 38.15      | 75.86     | 196.30     | 326.34     | 130.04     | 251.31    |
| 60        | 52.99      | 43.09      | -9.90      | -28.91    | 58.70      | 58.54      | -0.15      | -0.44     | 111.73     | 152.31     | 40.58      | 109.14    | 88.15      | 105.22     | 17.07      | 46.88     | 196.30     | 271.88     | 75.58      | 202.46    |
| 90        | 52.99      | 33.50      | -19.49     | -88.18    | 58.70      | 45.52      | -13.18     | -58.14    | 111.73     | 118.42     | 6.70       | 28.31     | 88.15      | 81.81      | -6.34      | -27.28    | 196.30     | 211.39     | 15.09      | 63.61     |
| 120       | 52.99      | 28.20      | -24.80     | -152.72   | 58.70      | 38.31      | -20.39     | -122.85   | 111.73     | 99.67      | -12.06     | -70.03    | 88.15      | 68.85      | -19.29     | -113.75   | 196.30     | 177.91     | -18.38     | -106.47   |
| 180       | 52.99      | 22.24      | -30.75     | -291.52   | 58.70      | 30.22      | -28.48     | -265.15   | 111.73     | 78.63      | -33.10     | -299.10   | 88.15      | 54.32      | -33.83     | -309.44   | 196.30     | 140.35     | -55.95     | -504.37   |
| 270       | 52.99      | 17.65      | -35.34     | -513.80   | 58.70      | 23.98      | -34.72     | -497.29   | 111.73     | 62.39      | -49.34     | -689.62   | 88.15      | 43.10      | -45.05     | -635.93   | 196.30     | 111.36     | -84.93     | -1184.91  |
| 360       | 52.99      | 14.96      | -38.03     | -746.91   | 58.70      | 20.33      | -38.37     | -743.89   | 111.73     | 52.88      | -58.85     | -1116.75  | 88.15      | 36.53      | -51.62     | -988.03   | 196.30     | 94.39      | -101.90    | -1930.74  |
| 540       | 52.99      | 11.71      | -41.28     | -1234.05  | 58.70      | 15.91      | -42.78     | -1265.22  | 111.73     | 41.40      | -70.32     | -2042.91  | 88.15      | 28.60      | -59.55     | -1742.30  | 196.30     | 73.91      | -122.39    | -3550.67  |
| 720       | 52.99      | 9.72       | -43.27     | -1738.67  | 58.70      | 13.21      | -45.49     | -1810.11  | 111.73     | 34.37      | -77.36     | -3029.70  | 88.15      | 23.74      | -64.41     | -2538.69  | 196.30     | 61.35      | -134.95    | -5278.78  |
| 1080      | 52.99      | 7.34       | -45.66     | -2775.99  | 58.70      | 9.97       | -48.73     | -2937.79  | 111.73     | 25.93      | -85.80     | -5100.85  | 88.15      | 17.91      | -70.24     | -4199.17  | 196.30     | 46.28      | -150.01    | -8909.14  |
| 1440      | 52.99      | 5.89       | -47.11     | -3835.25  | 58.70      | 8.00       | -50.70     | -4095.30  | 111.73     | 20.80      | -90.93     | -7249.70  | 88.15      | 14.37      | -73.78     | -5913.31  | 196.30     | 37.13      | -159.16    | -12678.19 |
| 1800      | 52.99      | 4.88       | -48.11     | -4906.97  | 58.70      | 6.63       | -52.07     | -5269.98  | 111.73     | 17.24      | -94.48     | -9444.22  | 88.15      | 11.91      | -76.24     | -7658.68  | 196.30     | 30.78      | -165.51    | -16528.81 |
| 2160      | 52.99      | 4.18       | -48.81     | -5983.55  | 58.70      | 5.68       | -53.02     | -6451.14  | 111.73     | 14.77      | -96.96     | -11655.06 | 88.15      | 10.21      | -77.94     | -9415.49  | 196.30     | 26.37      | -169.93    | -20408.54 |
| 2880      | 52.99      | 3.24       | -49.75     | -8146.73  | 58.70      | 4.40       | -54.29     | -8827.18  | 111.73     | 11.46      | -100.27    | -16112.92 | 88.15      | 7.91       | -80.24     | -12953.95 | 196.30     | 20.45      | -175.85    | -28232.60 |
| 4320      | 52.99      | 2.25       | -50.75     | -12490.68 | 58.70      | 3.05       | -55.64     | -13602.85 | 111.73     | 7.94       | -103.79    | -25088.77 | 88.15      | 5.48       | -82.67     | -20072.82 | 196.30     | 14.17      | -182.12    | -43987.99 |
| Volume ch | leck       |            |            | ok        |            |            |            | ok        |

## COMBINED 100 YEAR ARI DRAINAGE PROPERTIES

|    |                         | CATCHMENT          |                                        | CUMULA | TIVE EFFECTIVE A | REAS (m2) |                     | TIME             | OF CONCENTR         | ATION |          | CRITICAL STORM INTENSITY (mm/h) |
|----|-------------------------|--------------------|----------------------------------------|--------|------------------|-----------|---------------------|------------------|---------------------|-------|----------|---------------------------------|
|    | Contibuting<br>Segments | Contributing Lots  | Contributing<br>Upstream<br>Catchments | Road   | Lots             | Upstream  | Longest Path<br>(m) | RL Top<br>(mAHD) | RL Bottom<br>(mAHD) | Slope | TC (mln) | Pre-Dev                         |
| A1 | A1-A5                   | 10-16, 42-49n      | 46U,47U,49U,49NU                       | 31033  | 192500           | 105579    | 2463                | 126              | 54                  | 29.23 | 81.3     | 31.6                            |
| A2 | A2                      | 10-13              |                                        | 3075   | 20300            | 0         | 290                 | 58.5             | 57                  | 5.17  | 17.6     | 77.2                            |
| A3 | A3                      | 43                 |                                        | 3588   | 9800             | 0         | 350                 | 68               | 64                  | 11.43 | 19.2     | 73.5                            |
| A4 | A4                      | 46                 | 46U                                    | 3857   | 40600            | 29867     | 836                 | 123              | 70.5                | 62.80 | 27.5     | 59.6                            |
| A5 | A5                      | 47-49N             | 46U,47U,48U,49NU                       | 8747   | 66500            | 75712     | 1493                | 126              | 70                  | 37.51 | 50.7     | 41.7                            |
| A6 | A6                      |                    |                                        | 13299  | 0                | 0         | 453                 | 66               | 58                  | 17.66 | 22.8     | 66.5                            |
| B1 | B1                      |                    |                                        | 4748   | 0                | 0         | 149                 | 73.5             | 70                  | 23.49 | 7.8      | 123.8                           |
| C1 | C1                      | 22                 |                                        | 14946  | 0                | 0         | 1387                | 75               | 54                  | 15.14 | 71.1     | 34.2                            |
| C2 | C2                      | 23,24              |                                        | 1685   | 8750             | 0         | 304                 | 57               | 55                  | 6.58  | 19.1     | 73.7                            |
| C3 | C3,C4                   | 20,21,32-41        |                                        | 2841   | 159950           | 0         | 1204                | 75               | 55.5                | 16.20 | 48.0     | 43.0                            |
| C4 | C4                      | 33-41              |                                        | 10565  | 144200           | 0         | 939                 | 75               | 60.5                | 15.44 | 38.0     | 49.3                            |
| D1 | D1-D5                   | 25-30,49S-51,54,55 | 49SU,50U,51U,DRU                       | 1558   | 110600           | 109770    | 3125                | 125              | 54                  | 22.72 | 112.8    | 26.1                            |
| D2 | D2-D5                   | 26,27,498-51,54,55 | 49SU,50U,51U,DRU                       | 2116   | 78750            | 109770    | 2980                | 125              | 55                  | 23.49 | 108.5    | 26.7                            |
| D3 | D3-D5                   | 49S-51,54,55       | 49SU,50U,51U,DRU                       | 5457   | 69650            | 109770    | 2789                | 125              | 57                  | 24.38 | 101.1    | 27.9                            |
| D4 | D4,D5                   | 49S-51             | 49SU,50U,51U,DRU                       | 3801   | 50750            | 109770    | 2394                | 125              | 63                  | 25.90 | 86.8     | 30.5                            |
| D5 | D5                      | 49S-51             | 49SU,50U,51U,DRU                       | 9752   | 50750            | 109770    | 2022                | 125              | 70.5                | 26.95 | 72.4     | 33.8                            |
|    |                         |                    |                                        |        |                  |           |                     |                  |                     |       |          |                                 |

| Runoff Coefficients | Pre-Dev | Post-Dev |
|---------------------|---------|----------|
| Roads               | 0.35    | 0.85     |
| Swales/Basins       | 0.35    | 0        |
| Lots                | 0.35    | 0        |
| OS                  | 0.35    | 0        |
| Cleared Upland      | 0.35    | 0.35     |

#### Rainfall IFD

| Event  | Duration (mins) | Intensity (mm/hr) |
|--------|-----------------|-------------------|
| 1 min  | 1               | 257.40            |
| 2 min  | 2               | 210.00            |
| 3 min  | 3               | 192.40            |
| 4 min  | 4               | 178.50            |
| 5 min  | 5               | 166.80            |
| 10 min | 10              | 124.80            |
| 15 min | 15              | 100.40            |
| 20 min | 20              | 84.60             |
| 25 min | 25              | 73.68             |
| 30 min | 30              | 65.60             |
| 45 min | 45              | 50.53             |
| 1 hr   | 60              | 42.10             |
| 1.5 hr | 90              | 32.73             |
| 2 hr   | 120             | 27.55             |
| 3 hr   | 180             | 21.73             |
| 4.5 hr | 270             | 17.24             |
| 6 hr   | 360             | 14.62             |
| 9 hr   | 540             | 11.44             |
| 12 hr  | 720             | 9.50              |
| 18 hr  | 1080            | 7.17              |
| 24 hr  | 1440            | 5.75              |
| 30 hr  | 1800            | 4.77              |
| 36 hr  | 2160            | 4.08              |
| 48 hr  | 2880            | 3.17              |
| 72 hr  | 4320            | 2.19              |



# COMBINED 100 YEAR ARI FLOWS

| Segment | Contributing | Contributing Lots  | Contributing Upstream | Total Cum Peak | Long Slope | Swale Base | Swale Depth | Height Over |
|---------|--------------|--------------------|-----------------------|----------------|------------|------------|-------------|-------------|
|         | Segments     | _                  | Catchments            | FIOW (L/S)     |            | wiath (m)  | (m)         | weir (m)    |
| A1      | A1-A5        | 10-16, 42-49n      | 46U,47U,49U,49NU      | 2892.34        | 0.0179     | 5          | 0.6         | 0.28        |
| A2      | A2           | 10-13              |                       | 501.31         | 0.0066     | 4          | 0.5         | 0.15        |
| A3      | A3           | 43                 |                       | 273.18         | 0.0044     | 3          | 0.5         | 0.13        |
| A4      | A4           | 46                 | 46U                   | 1230.24        | 0.0140     | 2          | 0.6         | 0.25        |
| A5      | A5           | 47-49N             | 47U,48U,49NU          | 1748.01        | 0.0086     | 3.5        | 0.6         | 0.30        |
| A6      | A6           |                    |                       | 245.51         | 0.0190     | 4          | 0.5         | 0.07        |
| B1      | B1           |                    |                       | 163.29         | 0.0182     | 2          | 0.5         | 0.07        |
| C3      | C3,C4        | 20,21,32-41        |                       | 1946.20        | 0.0185     | 3          | 0.6         | 0.27        |
| C4      | C4           | 33-41              |                       | 2121.04        | 0.0016     | 4.5        | 0.8         | 0.48        |
| D1      | D1-D5        | 25-30,49S-51,54,55 | 49SU,50U,51U,DRU      | 1610.66        | 0.0071     | 3.5        | 0.6         | 0.30        |
| D2      | D2-D5        | 26,27,49S-51,54,55 | 49SU,50U,51U,DRU      | 1415.40        | 0.0079     | 3          | 0.6         | 0.29        |
| D3      | D3-D5        | 49S-51,54,55       | 49SU,50U,51U,DRU      | 1430.40        | 0.0172     | 3          | 0.6         | 0.26        |
| D4      | D4,D5        | 49S-51             | 49SU,50U,51U,DRU      | 1390.13        | 0.0209     | 4          | 0.5         | 0.20        |
| D5      | D5           | 49S-51             | 49SU,50U,51U,DRU      | 1600.45        | 0.0080     | 3.5        | 0.6         | 0.29        |

#### GNH CULVERT 100 YEAR ARI DRAINAGE PROPERTIES

| CATCHMENT |                                                                |                         |                        |                                        |        | EFFECTIVE AREAS (m2) |                     |       |                      |                     |         | TIME OF CONCENTRATION |                  |                     |       |          | CRITICAL STORM INTENSITY (mm/h) |
|-----------|----------------------------------------------------------------|-------------------------|------------------------|----------------------------------------|--------|----------------------|---------------------|-------|----------------------|---------------------|---------|-----------------------|------------------|---------------------|-------|----------|---------------------------------|
| Group     | Culverts                                                       | Contibuting<br>Segments | Contributing Lots      | Contributing<br>Upstream<br>Catchments | Lots   | Road<br>Reserve      | Swales/<br>Drainage | POS   | Upstream<br>Forested | Upstream<br>Cleared | Total   | Longest Path<br>(m)   | RL Top<br>(mAHD) | RL Bottom<br>(mAHD) | Slope | TC (mln) | Pre-Dev                         |
| A         | CH36.64<br>CH36.43                                             | A6, B1                  | 1-8,44                 | POS, NDU                               | 50929  | 9299                 | 251                 | 58193 | 147021               | 1012858             | 1278551 | 6514                  | 235              | 53                  | 27.94 | 192.7    | 19.1                            |
| В         | CH36.12<br>CH35.98<br>CH35.92<br>CH35.73<br>CH35.58<br>CH35.41 | A1-A5,C1-C4,D1          | 9-25, 28-43,45-49N     | POS, 46U-49NU                          | 404269 | 47994                | 1228                | 3074  |                      | 105579              | 562143  | 2540                  | 126              | 54                  | 28.35 | 80.0     | 31.9                            |
| С         | CH35.23<br>CH35.02                                             | D2-D5                   | 26,27,49S-51,54,55, DR | 49SU-51U, DRU                          | 78750  | 20611                | 516                 |       |                      | 109770              | 209646  | 2800                  | 125              | 56.7                | 24.39 | 100.3    | 28.0                            |
| D         | CH34.79                                                        |                         | 52,53                  | DR, SDU                                | 28000  |                      | 1318                |       |                      | 411053              | 440371  | 2850                  | 145              | 58.5                | 30.35 | 90.7     | 29.7                            |

| Runoff Coefficients | Pre-Dev | Post-Dev |
|---------------------|---------|----------|
| Roads               | 0.35    | 0.85     |
| Swales/Basins       | 0.35    | 0        |
| Lots                | 0.35    | 0.85     |
| POS                 | 0.35    | 0.35     |
| Cleared Upstram     | 0.35    | 0.35     |
| Forested Upstream   | 0.2     | 0.2      |



## 100 yr CULVERT FLOWS

|       |          |                | Culvert P | roperties |                 |                | 0                      | Post Developr         | Storage         |                  |            |             |          |        |
|-------|----------|----------------|-----------|-----------|-----------------|----------------|------------------------|-----------------------|-----------------|------------------|------------|-------------|----------|--------|
| Group | Culverts | No. & Size     | Length    | Slope     | Max Flow (m3/s) | Total Capacity | 100 yr Total Effective | 100 yr Critical Storm | 100 yr TC (min) | 100yr Flow (L/s) | GNH Swale  | GNH Swale   | Storage  | Volume |
|       |          |                |           |           |                 | (L/s)          | Area (m2)              | Intensity (mm/hr)     |                 |                  | Length (m) | Volume (m3) | Required | Check  |
|       |          |                |           |           |                 |                |                        |                       |                 |                  |            |             | (m3)     |        |
| A     | CH36.64  | 5 x 1.2 x 0.5  | 17.3      | 0.0068    | 6.5025          | 7618.3         | 1278551                | 10                    | 103             | 6788.06          | 306.00     | 1080.00     | 0.00     | ok     |
|       | CH36.43  | 1 x 0.9 x 0.45 | 14.8      | 0.0142    | 1.1158          | 7010.5         | 1270551                | 19                    | 190             | 0700.00          | 330.00     | 1003.00     | 0.00     | UK     |
| В     | CH36.12  | 1 x 0.6        | 17.2      | 0.0152    | 0.6258          |                |                        | 32                    |                 |                  | 1000.00    | 2750.00     | 1892.96  |        |
|       | CH35.98  | 2 x 0.5        | 14.8      | 0.0172    | 0.8202          |                | 560140                 |                       | 80              | 4986.14          |            |             |          |        |
|       | CH35.92  | 1 x 0.6        | 14.8      | 0.0110    | 0.5324          | 3583.0         |                        |                       |                 |                  |            |             |          | ok     |
|       | CH35.73  | 1 x 0.9 x 0.6  | 16        | 0.0086    | 1.2656          | 3363.9         | 502145                 |                       |                 |                  |            |             |          | UK     |
|       | CH35.58  | 1 x 0.45       | 16        | 0.0088    | 0.2217          |                |                        |                       |                 |                  |            |             |          |        |
|       | CH35.41  | 1 x 0.45       | 16        | 0.0025    | 0.1182          |                |                        |                       |                 |                  |            |             |          |        |
| С     | CH35.23  | 5 x 1.2 x 0.75 | 20.8      | 0.0057    | 10.28           | 12000          | 200646                 | 28                    | 100             | 1620 10          | 422.00     | 1100 75     | 0.00     | ok     |
|       | CH35.02  | 2 x 1.2 x 0.45 | 25.6      | 0.0092    | 2.618           | 12090          | 209040                 | 28                    | 100             | 1030.10          | 433.00     | 1190.75     | 0.00     | UK     |
| D     | CH34.79  | 4 x 1.2 x 0.75 | 25.6      | 0.0094    | 10.4872         | 10487.2        | 440371                 | 30                    | 91              | 3630.26          | 11.00      | 30.25       | 0.00     | ok     |

### **GNH Swale Dimensions**

Base width (m)4Depth (m)0.5Side slope3